Undergraduate Texts in Mathematics

Editors
F. W. Gehring
P. R. Halmos

Advisory Board
C. DePrima
I. Herstein
J. Kiefer

Wendell Fleming

Functions of
 Several Variables

2nd Edition

Springer-Verlag New York Heidelberg Berlin

Wendell Fleming
Brown University
Department of Mathematics
Providence, Rhode Island 02912

Editorial Board

F. W. Gehring
University of Michigan
Department of Mathematics
Ann Arbor, Michigan 48104

P. R. Halmos
University of California
Department of Mathematics
Santa Barbara, California 93106

AMS Subject Classifications: 26-01, 28-01, 58-01

Library of Congress Cataloging in Publication Data
Fleming, Wendell Helms, 1928-
Functions of several variables.
(Undergraduate texts in mathematics)
Bibliography: p .
Includes index.

1. Functions of several real variables.
I. Title
$\begin{array}{llll}\text { QA331.F63 } & 1977 & 515.84 & 76-40029\end{array}$

All rights reserved.
No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag.
© 1965 by Wendell Fleming
© 1977 by Springer-Verlag, New York Inc.
Softcover reprint of the hardcover 2nd edition 1977

To Flo

Preface

The purpose of this book is to give a systematic development of differential and integral calculus for functions of several variables. The traditional topics from advanced calculus are included: maxima and minima, chain rule, implicit function theorem, multiple integrals, divergence and Stokes's theorems, and so on. However, the treatment differs in several important respects from the traditional one. Vector notation is used throughout, and the distinction is maintained between n-dimensional euclidean space E^{n} and its dual. The elements of the Lebesgue theory of integrals are given. In place of the traditional vector analysis in E^{3}, we introduce exterior algebra and the calculus of exterior differential forms. The formulas of vector analysis then become special cases of formulas about differential forms and integrals over manifolds lying in E^{n}.

The book is suitable for a one-year course at the advanced undergraduate level. By omitting certain chapters, a one semester course can be based on it. For instance, if the students already have a good knowledge of partial differentiation and the elementary topology of E^{n}, then substantial parts of Chapters $4,5,7$, and 8 can be covered in a semester. Some knowledge of linear algebra is presumed. However, results from linear algebra are reviewed as needed (in some cases without proof).

A number of changes have been made in the first edition. Many of these were suggested by classroom experience. A new Chapter 2 on elementary topology has been added. Additional physical applications-to thermodynamics and classical mechanics-have been added in Chapters 6 and 8. Different proofs, perhaps easier for the beginner, have been given for two main theorems (the Inverse Function Theorem and the Divergence Theorem.)

The author is indebted to many colleagues and students at Brown University for their valuable suggestions. Particular thanks are due Hildegarde Kneisel, Scott Shenker, and Joseph Silverman for their excellent help in preparing this edition.

Wendell H. Fleming

Providence, Rhode Island June, 1976

Contents

Chapter 1
Euclidean spaces 1
1.1 The real number system 2
1.2 Euclidean E^{n} 5
1.3 Elementary geometry of E^{n} 10
1.4 Basic topological notions in E^{n} 14
*1.5 Convex sets 19
Chapter 2
Elementary topology of E^{n} 28
2.1 Functions 28
2.2 Limits and continuity of transformations 31
2.3 Sequences in E^{n} 37
2.4 Bolzano-Weierstrass theorem 43
2.5 Relative neighborhoods, continuous transformations 47
2.6 Topological spaces 50
2.7 Connectedness 56
2.8 Compactness 60
2.9 Metric spaces 62
2.10 Spaces of continuous functions 67
*2.11 Noneuclidean norms on E^{n} 70
Chapter 3
Differentiation of real-valued functions 76
3.1 Directional and partial derivatives 76
3.2 Linear functions 79
3.3 Differentiable functions 82
3.4 Functions of class $C^{(q)}$ 89
3.5 Relative extrema 99
*3.6 Convex and concave functions 107
Chapter 4
Vector-valued functions of several variables 119
4.1 Linear transformations 119
4.2 Affine transformations 125
4.3 Differentiable transformations 128
4.4 Composition 134
4.5 The inverse function theorem 140
4.6 The implicit function theorem 147
4.7 Manifolds 153
4.8 The multiplier rule 161
Chapter 5
Integration 167
5.1 Intervals 168
5.2 Measure 170
5.3 Integrals over E^{n} 181
5.4 Integrals over bounded sets 186
5.5 Iterated integrals 190
5.6 Integrals of continuous functions 200
5.7 Change of measure under affine transformations 206
5.8 Transformation of integrals 209
5.9 Coordinate systems in E^{n} 216
5.10 Measurable sets and functions; further properties 222
5.11 Integrals: general definition, convergence theorems 227
5.12 Differentiation under the integral sign 237
$5.13 L^{p}$-spaces 240
Chapter 6
Curves and line integrals 245
6.1 Derivatives 245
6.2 Curves in E^{n} 247
6.3 Differential 1-forms 253
6.4 Line integrals 258
*6.5 Gradient method 265
*6.6 Integrating factors; thermal systems 268
Chapter 7
Exterior algebra and differential calculus 275
7.1 Covectors and differential forms of degree 2 276
7.2 Alternating multilinear functions 283
7.3 Multicovectors 287
7.4 Differential forms 291
7.5 Multivectors 295
7.6 Induced linear transformations 306
7.7 Transformation law for differential forms 309
7.8 The adjoint and codifferential 311
*7.9 Special results for $n=3$ 316
*7.10 Integrating factors (continued) 318
Chapter 8
Integration on manifolds 321
8.1 Regular transformations 322
8.2 Coordinate systems on manifolds 329
8.3 Measure and integration on manifolds 334
8.4 The divergence theorem 340
*8.5 Fluid flow 350
8.6 Orientations 353
8.7 Integrals of r-forms 356
8.8 Stokes's formula 362
8.9 Regular transformations on submanifolds 367
8.10 Closed and exact differential forms 369
8.11 Motion of a particle 375
8.12 Motion of several particles 380
Appendix 1
Axioms for a vector space 383
Appendix 2
Mean value theorem; Taylor's theorem 385
Appendix 3
Review of Riemann integration 386
Appendix 4
Monotone functions 388
References 389
Answers to problems 391
Index 405

