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Preface 

The purpose of this book is to give a systematic development of differential 
and integral calculus for functions of several variables. The traditional topics 
from advanced calculus are included: maxima and minima, chain rule, 
implicit function theorem, multiple integrals, divergence and Stokes's 
theorems, and so on. However, the treatment differs in several important 
respects from the traditional one. Vector notation is used throughout, and 
the distinction is maintained between n-dimensional euclidean space En and 
its dual. The elements of the Lebesgue theory of integrals are given. In 
place of the traditional vector analysis in £3, we introduce exterior algebra 
and the calculus of exterior differential forms. The formulas of vector 
analysis then become special cases of formulas about differential forms and 
integrals over manifolds lying in P. 

The book is suitable for a one-year course at the advanced undergraduate 
level. By omitting certain chapters, a one semester course can be based on it. 
For instance, if the students already have a good knowledge of partial 
differentiation and the elementary topology of P, then substantial parts of 
Chapters 4, 5, 7, and 8 can be covered in a semester. Some knowledge of 
linear algebra is presumed. However, results from linear algebra are reviewed 
as needed (in some cases without proof). 

A number of changes have been made in the first edition. Many of these 
were suggested by classroom experience. A new Chapter 2 on elementary 
topology has been added. Additional physical applications-to thermo­
dynamics and classical mechanics-have been added in Chapters 6 and 8. 
Different proofs, perhaps easier for the beginner, have been given for two 
main theorems (the Inverse Function Theorem and the Divergence Theorem.) 
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Preface 

The author is indebted to many colleagues and students at Brown Uni­
versity for their valuable suggestions. Particular thanks are due Hildegarde 
Kneisel, Scott Shenker, and Joseph Silverman for their excellent help in 
preparing this edition. 

Providence, Rhode Island 
June, 1976 
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