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6 Warm up Problems 79

1 Differentiation

1.1 The Derivative

Definition 1.1. Suppose that X and Y are normed vector spaces, with norms | · |X
and | · |Y , and f : X → Y . Then we say that f has the derivative Dxf ≡ A at
x ∈ X, if there is a linear operator A : X → Y such that:

f(x+ h)− f(x) = A(h) + g(h)

where
|g(h)|Y
|h|X

→
|h|X→0

0.

We will usually suppress the X and Y on the norms so that the last condition
becomes

|g(h)|
|h|

→
|h|→0

0

where we understand from the context that the norm is the correct one for the
vector it is measuring. I.e. since g(h) ∈ Y , then |g(h)| must actually be |g(h)|Y .

In a nutshell: a function f is differentiable at x, if it is arbitrarily well approx-
imated by a fixed linear transformation near x.

Remark 1.1. Of any g(h) satisfying this last condition, we would say “g(h) is in
o(h)”, which read literally as “g(h) is in little o of h”.

1.2 Variational Derivative for
∫

Ω∇u · ∇u dx
Suppose that

1. For any twice differentiable u : Ω ⊂ Rn → R we define the operator:

F (u) ≡
∫

Ω
∇u · ∇u dx

2. and we consider a perturbation to u, h : Ω ⊂ Rn → R and h|∂Ω = 0. (Think
of this as a direction in the function space we want to move and see how F
changes. h|∂Ω = 0 means that h is 0 on the boundary of the domain Ω.)

3. We also recall that in this function space |h| = (
∫

Ω h
2 dx)

1
2 .
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4. Now we restrict ourselves to h’s of the form h = αhg where |g| = 1, where αh
is some real number. (Notice that this is really no restriction since for any h,
we can define αh ≡ |h|, note that | h|h| | = 1 and get that h = αh

h
|h| .)

We want to show that h→
∫

Ω ∆u h dx is a linear approximation to the derivative
to F at u. That is, that it is the derivative operator for F at u.

Recalling the definition of derivative as the linear operator Lu (if it exists) that
satisfies:

F (u+ h)− F (u) = Lu(h) + r(h)

where |r(h)|
|h| → 0 as |h| → 0, we begin computing and rearranging terms:

F (u+ h)− F (u) =

∫
Ω
∇u · ∇u dx+ 2

∫
Ω
∇u · ∇h+

∫
Ω
∇h · ∇h dx−

∫
Ω
∇u · ∇u dx

= 2

∫
Ω
∇u · ∇h+

∫
Ω
∇h · ∇h dx

= 2αh

∫
Ω
∇u · ∇g + α2

h

∫
Ω
∇g · ∇g dx

= −2

∫
Ω

∆u (αhg) + α2
h

∫
Ω
∇g · ∇g dx (Divergence Theorem)

= −2

∫
Ω

∆u h+ α2
h

∫
Ω
∇g · ∇g dx

where we have used the vector calculus version of integration by parts to get the
last equation.

(To see the step labeled “Divergence Theorem” above, notice that by the diver-
gence theorem, we get ∫

Ω
∇ · (g∇u) dx =

∫
∂Ω

(g∇u) · ~n dσ

where ~n is the outward normal vector to ∂Ω, and since g = 0 on ∂Ω, we get that
the right hand side is 0. That is ∫

Ω
∇ · (g∇u) = 0

Evaluating the left hand side, we get:∫
Ω
∇ · (g∇u) dx =

∫
Ω
∇g · ∇u+ g(∇ · ∇u) dx

=

∫
Ω
∇g · ∇u+ g∆u dx

4



)
Restating where we are:

F (u+ h)− F (u) = −2

∫
Ω

∆u h+ α2
h

∫
Ω
∇g · ∇g dx

we first recognize that

−2

∫
Ω

∆u h dx

is linear in h so we define

Lu(h) ≡ −2

∫
Ω

∆u h dx

which lets us conclude that:

F (u+ h)− F (u) = Lu(h) + α2
h

∫
Ω
∇g · ∇g dx

Using the fact that αh = |h|, we define

r(h) ≡ |h|2
∫

Ω
∇
(
h

|h|

)
· ∇
(
h

|h|

)
dx

= α2
h

∫
Ω
∇g · ∇g dx

and we get that
F (u+ h)− F (u) = Lu(h) + r(h).

All we need to do now is show that r(h) ∼ o(h) and we are done.

|r(h)|
|h|

=
|α2
h

∫
Ω∇g · ∇g dx|
|h|

=
|α2
h

∫
Ω∇g · ∇g dx|

αh

= αh|
∫

Ω
∇g · ∇g dx|

= |h|
∣∣∣∣∫

Ω
∇g · ∇g dx

∣∣∣∣
→ 0 (as |h| → 0)

Note that when we fixed g and varied αh in order to change h, this resulted in
us using αh → 0 to get |h| → 0. And in doing this, we chose one, 1-dimensional
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path to 0. (That is, we ended up calculating a directional derivative.) In order
to get the more general limit that is path independent, we actually need to choose
our norm on the space of functions and perturbations more carefully. Given that
we are assuming that the functions are twice differentiable, a norm of a function
wΩRn → R, |w|, that works for this task is given by:

|w| ≡
∫

Ω
|w(x)| dx+

∫
Ω
|∇w(x)| dx

∫
Ω
|∆w(x)| dx

Exercise 1.1. Show that if

1. we define Lu as before,

2. use this new norm,

3. recall that we just calculated:

F (u+ h)− F (u) =

∫
Ω
∇u · ∇u dx+ 2

∫
Ω
∇u · ∇h+

∫
Ω
∇h · ∇h dx−

∫
Ω
∇u · ∇u dx

= 2

∫
Ω
∇u · ∇h+

∫
Ω
∇h · ∇h dx

= −2

∫
Ω

∆u h+

∫
Ω
∇h · ∇h dx

= Lu(h) +

∫
Ω
∇h · ∇h dx

4. and define r(h) ≡
∫

Ω∇h · ∇h dx,

we can conclude that

1. |r(h)| < |h|2

2. F (u+ h)− F (u) = Lu(h) + r(h) and

3. r(h) ∼ o(h)

The point of this exercise is that using a harder to understand norm, leads to an
easier proof of a nicer limit (the limit is path independent, whereas the first limit
we found was actually a directional derivative.

1.3 Jacobian Matrices

While we know (by definition) that f is differentiable at x if there is an Lx such
that:

f(x+ h)− f(x) = Lx(h) + r(h)

where

6



1. f : Rn → Rm,

2. r(h) ∼ o(h) and

3. Lx : Rn → Rm is a linear function,

a practically important question is “How do we compute Lx from f(x)?”

Answer: Lx is the matrix of partial derivatives of f :

Dxf = Lx = ∂xf =


∂x1f1 ∂x2f1 · · · ∂xnf1

∂x1f2 ∂x2f2 · · · ∂xnf2
...

...
...

∂x1fm ∂x2fm · · · ∂xnfm


How we go about showing this is true: We will first show that if there

is a linear function satisfying the definition of derivative, it must be the matrix of
partial derivatives, and then we show that if f has continuous partial derivatives,
then f is differentiable.

1.3.1 If f is differentiable, then the derivative is the matrix of par-
tial derivatives,

We will show this in the case that n = m = 2 and note that the proof in the case
of general n and m is completely analogous. In that case, the equation for the
derivative is given by:[

f1(x1 + h1, x2 + h2)
f2(x1 + h1, x2 + h2)

]
−
[
f1(x1, x2)
f2(x1, x2)

]
=

[
a b
c d

] [
h1

h2

]
+

[
r1(h)
r2(h)

]
where we have used a completely general form for the derivative matrix:[

a b
c d

]
.

Notice first that this is really two equations:

f1(x1 + h1, x2 + h2)− f1(x1, x2) = ah1 + bh2 + r1(h)

and
f2(x1 + h1, x2 + h2)− f2(x1, x2) = ch1 + dh2 + r2(h).

and that each equation is true for all h. Suppose we set h2 = 0. This gives us that:

f1(x1 + h1, x2)− f1(x1, x2) = ah1 + r1((h1, 0))

7



and if we divide by h1, we get:

f1(x1 + h1, x2)− f1(x1, x2)

h1
− a =

r1((h1, 0))

h1
(1)

≤ |r1((h1, 0))|
|h1|

(2)

=
|r1(h)|
|h|

(3)

→ 0 (as |h| → 0 ) (4)

But this is just saying that
(∂x1f1)(x) = a

i.e. ∂x1f1 evaluated at x equals a. We will suppress the point at which we are
evaluating the partial derivative if it is clear from the context where that point is.

Now setting h1 = 0, we get

f1(x1, x2 + h2)− f1(x1, x2)

h2
− b =

r1((0, h2))

h2
(5)

≤ |r1((0, h2))|
|h2|

(6)

=
|r1(h)|
|h|

(7)

→ 0 (as |h| → 0 ) (8)

and conclude that
(∂x2f1)(x) = a

i.e. ∂x2f1 evaluated at x equals b.
In a completely analogous way, we get that

(∂x1f2)(x) = c

and
(∂x2f2)(x) = d

so that we have: [
a b
c d

]
=

[
∂x1f1 ∂x2f1

∂x1f2 ∂x2f2

]
.

And that is what we set out to show.
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1.3.2 If f ∈ C1, then f is differentiable.

The four ingredients we need for this part are:

(1) The mean value theorem in 1 dimension: if f : [a, b] ⊂ R→ R and
f is differentiable everywhere in (a, b), then there is a c ∈ (a, b) such that

f(b)− f(a)

(b− a)
= f ′(c)

which can be rewritten in the equivalent form

f(a+ h)− f(a) = f ′(c) · h

where b− a = h.

(2) A function s that bounds the convergence of a collection of
functions, each continuous at x: if

(a) gj : Rn → R (for j = 1, 2, ...k )

(b) limy→x gj = gj(x) (for j = 1, 2, ..., k ),

then there is a function s : [0,∞]→ [0,∞] such that:

(a) s is monotonically increasing: ω1 < ω2 ⇒ s(ω1) ≤ s(ω2).

(b) limω→0 s(ω) = 0

(c) and
sup

j∈{1,2,...,k}, y∈Bx(ω)
|gj(y)− gj(x)| ≤ s(ω)

where Bx(ω) is the ball centered at x with radius.

Exercise 1.2. Prove that such an s(ω) exists.

(3) The realization that we can go from x to x + h in n dimensions
in a series of n steps that each change only one coordinate:

f(x1 + h1, ... , xn + hn)− f(x1, ..., xn)

step n = f(x1 + h1, ..., xn + hn)− f(x1 + h1, ..., xn−1 + hn−1, xn)

step n-1 + f(x1 + h1, ..., xn−1 + hn−1, xn)− f(x1 + h1, ..., , xn−2 + hn−2, xn−1, xn)

step n-2 + f(x1 + h1, ..., xn−2 + hn−2, xn−1, xn)− f(x1 + h1, ..., xn−3 + hn−3, xn−2, ...)

+
...

step 2 + f(x1 + h1, x2 + h2, x3, ..., xn)− f(x1 + h1, x2, x3..., xn)

step 1 + f(x1 + h1, x2, x3, ..., xn)− f(x1, ..., xn)

9



(4) The realization that we only need to prove the assertion for a
function f : Rn → R: because the general case of f : Rn → Rm is just a
collection of m functions fi : Rn → R. That is, the assertion that there is an
Lx such that:

f(x+ h)− f(x) = Lx(h) + r(h)

where

(a) f : Rn → Rm,

(b) r(h) ∼ o(h) and

(c) Lx : Rn → Rm is a linear function,

is completely equivalent to the assertion that, for i = 1, 2, ...m there is an Lix
such that:

fi(x+ h)− fi(x) = Lx(h) + ri(h)

where

(a) fi : Rn → R,

(b) ri(h) ∼ o(h) and

(c) Lix : Rn → R is a linear function,

Now, putting these together, we start by writing what we want to show:
Ingredient (4) implies that what we want to prove is:

f(x1 + h1, ..., xn + hn)− f(x1, ..., xn) = ∂x1f · h1 + ...+ ∂xnf · hn + r(h)

= ∇f · ~h+ r(h)

with the constraint that r(h) ∼ o(h) or, equivalently

f(x1 + h1, ..., xn + hn)− f(x1, ..., xn)− (∂x1f · h1 + ...+ ∂xnf · hn) = r(h) (9)

for some r(h) such that r(h) ∼ o(h).

Now, using (3) we get that: the left hand side of the last equation

f(x1 + h1, ..., xn + hn)− f(x1, ..., xn)− (∂x1f · h1 + ...+ ∂xnf · hn)

is the sum of n pieces:

10



f(x1 + h1, ..., xn + hn)− f(x1, ..., xn)− (∂x1f · h1 + ...+ ∂xnf · hn)

= f(x1 + h1, ..., xn + hn)− f(x1 + h1, ..., xn−1 + hn−1, xn)− ∂xnf · hn
+ f(x1 + h1, ..., xn−1 + hn−1, xn)− f(x1 + h1, ..., , xn−2 + hn−2, xn−1, xn)− ∂xn−1f · hn−1

+ f(x1 + h1, ..., xn−2 + hn−2, xn−1, xn)− f(x1 + h1, ..., xn−3 + hn−3, xn−2, ...)− ∂xn−2f · hn−2

+
...

+ f(x1 + h1, x2 + h2, x3, ..., xn)− f(x1 + h1, x2, x3..., xn)− ∂x2f · h2

+ f(x1 + h1, x2, x3, ..., xn)− f(x1, ..., xn)− ∂x1f · h1

Now we use (1) to get that the first difference: of each of these n pieces is
exactly equal to the partial derivative evaluated at a point

ĉi ≡ (x1, x2, ..., xi−1, ci, xi+1 + hi+1, ..., xn + hn),

where (xi < ci < xi + hi). That is,

f(x1 + h1, ..., xn + hn)− f(x1 + h1, ..., xn−1 + hn−1, xn) = ∂xnf(ĉn) · hn
f(x1 + h1, ..., xn−1 + hn−1, xn)− f(x1 + h1, ..., , xn−2 + hn−2, xn−1, xn) = ∂xn−1f(ĉn−1) · hn−1

f(x1 + h1, ..., xn−2 + hn−2, xn−1, xn)− f(x1 + h1, ..., xn−3 + hn−3, xn−2, ...) = ∂xn−2f(ĉn−2) · hn−2

...

f(x1 + h1, x2 + h2, x3, ..., xn)− f(x1 + h1, x2, x3..., xn) = ∂x2f(ĉ2) · h2

f(x1 + h1, x2, x3, ..., xn)− f(x1, ..., xn) = ∂x1f(ĉ1) · h1

this then allows us to write the left hand side of Equation (9) as

(∂x1f(ĉ1) · h1 − ∂x1f(x) · h1)

+ (∂x2f(ĉ2) · h2 − ∂x2f(x) · h2)

...

+ (∂xnf(ĉn) · hn − ∂xnf(x) · hn)

or equivalently as

(∂x1f(ĉ1)− ∂x1f(x)) · h1

+ (∂x2f(ĉ2)− ∂x2f(x)) · h2

...

+ (∂xnf(ĉn)− ∂xnf(x)) · hn

11



But we are assuming that each of the partial derivatives are continuous
at x, so by (2) we have that: there is a function s : [0,∞] → [0,∞] such that
s(|h|)→ 0 when |h| → 0 and

|∂xif(ĉi)− ∂xif(x)| ≤ s(|h|)

due to the fact that, for all i,
|ĉi − x| ≤ |h|

Now, noting that for all i, |hi| ≤ |h|, allows us:, finally, to compute a bound
for the left hand side of Equation (9):

f(x1 + h1, ..., xn + hn) − f(x1, ..., xn)− (∂x1f · h1 + ...+ ∂xnf · hn)

= (∂x1f(ĉ1)− ∂x1f(x)) · h1

+ (∂x2f(ĉ2)− ∂x2f(x)) · h2

...

+ (∂xnf(ĉn)− ∂xnf(x)) · hn
≤ s(|h|) · |h1|+ s(|h|) · |h2|+ ...+ s(|h|) · |hn|
≤ n s(|h|)|h|

Which implies that

|r(h)| ≡ |f(x1 + h1, ..., xn + hn)− f(x1, ..., xn)− (∂x1f · h1 + ...+ ∂xnf · hn) |
≤ n s(|h|)|h|

which implies that

|r(h)|
|h|

≤ n s(|h|)

→ 0 (as |h| → 0)

which means that
r(h) ∼ o(h)

and that concludes our proof that f ∈ C1 implies f is differentiable (i.e.
there are linear approximations where f is C1).
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1.3.3 Some More Exercises

Note: exercises are not always directly related to what has just been
covered. They are meant to encourage exploration and discovery in the same
general vicinity as what we are covering, but you should not necessarily try to see
some close connection to the section we just studied. IN this case, none of these
problems are about derivatives of functions from Rn to Rm. Nevertheless, these
exercises do give you a facility that is very useful in your quest for mastery of (a
non-boring version) of analysis.

Exercise 1.3. Find a function f : R→ R that is

1. discontinuous everywhere except at x = 0

2. is not only continuous at x = 0 but is actually also differentiable x = 0.

Hint: use the region between the graphs of f(x) = x2 and f(x) = −x2 to guide your
thinking.

Exercise 1.4. (Harder) Find a function f : [0, 1] ⊂ R→ [0, 1] that is:

1. Monotonically increasing

2. Discontinuous at every rational point in (0,1)

3. Continuous at every irrational point in (0,1)

Hints: (a) enumerate the rationals in Q ∩ (0, 1) to get q1, q2, ... and (b) notice that∑∞
i=1

1
2i

= 1.

Exercise 1.5. (Harder) Suppose: that we denote the number of points in a set
E by |E| and we have that

1. f : [0, 1]→ R is differentiable everywhere,

2. Xc ≡ {x | f(x) = c}, and

3. | dfdx(y)| ≥ α > 0 for all y ∈ Xc.

Prove: that |Xc| is finite. Hint: use the cone property you have been asked to
prove in part 1 of Problem (5.1) .

1.4 Derivatives and Intersections

We now take Exercise (1.5) and run with it. Here are three exercises to get us
started (you also encountered them in the class on January 29, 2020).
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1.4.1 Warm up Exercises

Exercise 1.6. (without hints = Harder) Suppose: that we denote the number
of points in a set E by |E| and we have that

1. f : [0, 1]→ R is differentiable everywhere,

2. Xc ≡ {x | f(x) = c}, and

3. | dfdx(y)| > 0 for all y ∈ Xc.

Prove: that |Xc| is finite.
Hint: use (1) an assumption that all derivatives are non-zero and |Xc| =∞ (in an
effort to get a contradiction) , (2) the compactness of [0,1], (3) the continuity of f,
(4) the cone property you have been asked to prove in part 1 of Problem (5.1) .

Exercise 1.7. Again: suppose that we denote the number of points in a set E by
|E| and we have that

1. f : [0, 1]→ R is differentiable everywhere,

2. |{x | dfdx(x) = 0}| <∞

3. Xc ≡ {x | f(x) = c}

Prove: that |Xc| is finite. Hint: Suppose that N ≡ |{x | dfdx(x) = 0}|

and that |Xc| ≥ N + 2. Find a contradiction.

Exercise 1.8. (Harder) Let’s: see if we can bound the number of points in |Xc|:

1. f : [0, 1]→ R is in fact twice differentiable everywhere, i.e. f ∈ C2,

2.
∣∣∣d2fdx2

∣∣∣ < β,

3. | dfdx(y)| ≥ α > 0 for all y ∈ Xc.

4. Xc ≡ {x | f(x) = c}, and

Prove: that |Xc| ≤ 1
2α
β

= β
2α . Hint: what if f(x) = 1

2βx
2?
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1.4.2 The Theory

Now we look a little more deeply at level sets on which the derivative is non-zero.
We begin with three definitions.

Definition 1.1 (Level Sets). A level set of f : E ⊂ X → Y is any set of the form
Xc ≡ {x | f(x) = c ∈ Y }. The set Xc is sometimes called the c-level set of f and is
also denoted by f−1(c), the inverse image, under f , of the point c ∈ Y

Definition 1.2 (Regular Level Sets for functions f : E ⊂ R→ R). A level set
of a function f : R→ R, Xc ≡ {x | f(x) = c}, is called a regular level set if, for
every y ∈ Xc there exists an open ball interval (y− δy, y+ δy) with δy > 0 such that
(y − δy, y + δy) ∩Xc = {y}.

Definition 1.3 (Regular values: f : E ⊂ R→ R). Suppose that f : E ⊂ R→ R
and that Xc ≡ {x | f(x) = c}. If every derivative on the level set is non-zero: I.e.
y ∈ Xc ⇒ | dfdx(y)| 6= 0, we say that c is a regular value of f

You have now seen, in the exercises, that if c is a regular value, the Xc is a
regular level set. That is, you know that:

Theorem 1.1 (Regular Level Sets). Level sets defined by regular values are
regular.

The question that you might have is how much does this generalize? Is this true
in higher dimensions? The answer is that this is true much more generally. In the
next section, I outline the entire course and how this question and similar ones are
actually central to what we will explore and learn.

Now we give the generalizations to the case in which the spaces X and Y in
Definition (1.1) are given by X = Rn and Y = Rm.

Definition 1.4 (Regular Level Sets for functions f : E ⊂ Rn → Rm). Define
k ≡ max(n − m, 0). A level set of a function f : Rn → Rm, Xc ≡ {x | f(x) =
c}, is called a regular level set if, for every y ∈ Xc there exists an open ball
B(y, ε), centered at y with radius ε, such that B(y, ε) ∩Xc is well approximated by
B(y, ε)∩{y+Vy}∩E where Vy is a k-dimensional subspace of Rn. (Well approximated
means that there is a smooth change of coordinates, converging to the identity map
as ε→ 0, mapping these two sets bijectively onto each other.)

Definition 1.5 (Regular values: f : E ⊂ R → R). Suppose that f : E ⊂ Rn →
Rm and that Xc ≡ {x | f(x) = c}. If every derivative on the level set is full rank:
I.e. y ∈ Xc ⇒ rank(Dyf) = min(m,n), we say that c is a regular value of f . In
that case, for all y ∈ Xc, the Vy in definition (1.4) equals Dyf(0)−1

Exercise 1.9. See if you can show that Definitions (1.2) and (1.3) are special cases
of Definitions (1.4) and (1.5)
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1.5 Pause for an overview of where we are going

We now have enough under our belt to motivate a big picture of the course and
what we will explore. We begin with a very simple smooth function f : R→ R:

0 1x-axis

y = f(x)

y-axis

0

1

ŷ

Figure 1: The level set Xŷ has 7 elements, shown as 7 blue dots in this figure.
Same figure can be used to illustrate each of the three integrals.

Three integrals, their generalizations and the wild and woolly intersection
of differentiation and integration:

Index Theory∫ 1

0

∑
x∈Xy

sign(
df

dx
(x)) dy = oriented length of f([0,1]) with cancellation

→ special case of index Theory

→ will bring up Sard’s Theorem for us

Area/Coarea∫ 1

0

∣∣∣∣ dfdx(y)

∣∣∣∣ dx = length of f([0,1]) with multiplicities

→ special case of area and coarea formulas

Stokes Theorem∫ 1

0

df

dx
(y) dx = f(1)− f(0) = oriented length of f([0,1]) with cancellation

→ simple case of divergence theorem

→ which is itself a simple case of Stokes Theorem
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The first integral gets us thinking about regular values and regular level
sets which leads to a bunch of cool stuff:

Regular Values of Mappings Rn → Rm

rank(Dyf) = max(n−m, 0) ∀ y ∈ Xc

→ Sard’s Theorem also comes up

→ Which brings up the 5R covering theorem

→ Which becomes a good place to begin looking at outer measures

Regular Level sets Rn → Rm

(B(y, ε) ∩ {y + Vy} ∩ E) ∼ (B(y, ε) ∩Xc) ∀ y ∈ Xc

→ Really the same idea as Derivative = linear approximation

→ Introduces Manifolds

Regular Value implies Regular level set Rn → Rm(
B(y, ε) ∩ {y +Dyf

−1(0)} ∩ E
)
∼ (B(y, ε) ∩Xc) ∀ y ∈ Xc

→ Level sets corresponding to Regular values = manifolds

The second integral formula introduces the area and coarea formulas.
These generalize to rather wild functions and sets. The third is a special
(and very simple) case of Stokes Theorem.

Area/Coarea Formulas: f : Rn → Rm∫
Ω
g(x)J∗fdx =

∫
f(Ω)

(∫
f−1(w)

g(x)dHmax(n−m,0)(x)

)
dHm(w)

→ a very powerful general tool for tracking and computing mapped volumes

→ We encounter Outer Measures and Hausdorff Measures in earnest here!

Stokes Theorem – Briefly∫
∂Ω
ω =

∫
Ω
dω (Stokes Theorem)

→
∫
∂Ω
v · ~n dσ =

∫
Ω
∇ · v dx (Divergence Theorem)

→
∮
∂Ω
~v · T∂Ω =

∫
Ω
∇× ~v dx (Little Stokes Theorem)
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We will also encounter and use tools that we focus on because of their
importance. We have already spent some time with derivatives. We are
about to look at Taylor series which are a higher order generalization of
the Mean Value Theorem.

Working with Inequalities Cauchy-Schwartz’s, Hölder’s, Jensen’s, AM-GM, Chebe-
shev, etc.

Understanding Linear Maps and Subspaces The Singular Value Decomposi-
tion (SVD): A = USV t where U and V are orthogonal and S is diagonal with
diagonal elements non-negative ordered from greatest to least as we move
down the diagonal, QR decomposition A = QR where Q is orthogonal and
R is an upper triangular ... this is just Gram-Schmidt, Ax = λx eigenvec-
tor/eigenvalue, Hermitian/selfadjoint matrices, linear subspaces, orthogonal
matrices and projections, etc

Derivatives = Linear Approximations: As long as F : X → Y , where X and
Y are complete normed Linear spaces, we can hope that F (x + h) − F (x) =
A(h) + o(h) is true for some linear operator A that depends on x, which we
then call DxF ... i.e. that F is differentiable at x. Infinite dimensions are not
a problem!

Mean Value Theorem (and Taylor Series) If f is differentiable in (a, b), then
there is always a c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a). We can turn
this into a route to get Taylor series which are really higher order versions of
the mean value theorem.

Measure Theory Facts: the essentials Outer measures, Radon measures, Haus-
dorff measures, 5R covering theorem, approximation theorems, etc

Misc lots of interesting little detours and wild functions and spaces to explore ...

1.6 Taylor Series

There are a three approaches to proving different version of Taylor series approxima-
tions. Two use the mean value theorem and the third, the definition of derivative.

1.6.1 Mean Value Theorem Approach I

We first use the mean value theorem in a very straightforward way to get Taylor
Series approximations to a function. In this approach we assume that f ∈ Cn+1

and conclude that

f(x+ h)−
n∑
k=0

fk(x)
hk

k!
= fn+1(c(h))

hn+1

(n+ 1)!
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for some c(h) between x and x+ h.

We begin by demonstrating how it goes when n = 1.

1. Begin with the Mean Value Theorem:

g(x+ h)− g(x) = g′(c)h (for some c ∈ (x, x+ h) or (x+ h, x))

(We will assume that h > 0 and note that everything works when h < 0 too.
But you should convince yourself this is true!)

2. Apply this to g(x) = f ′(x) and assume f ∈ C2 and conclude that

f ′(x+ h)− f ′(x) = f ′′(c(h))h (for some c ∈ (x, x+ h))

3. Integrate this to get:∫ h

0
f ′(x+ t) dt−

∫ h

0
f ′(x) dt =

∫ h

0
f ′′(c(t))t dt (10)

→ f(x+ h)− f(x)− f ′(x)h =

∫ h

0
f ′′(c(t))t dt (11)

4. Define

f ′′m = min
s∈[x,x+h]

f ′′(s)

f ′′M = max
s∈[x,x+h]

f ′′(s)

5. Because x < c(t) < x+ t ≤ x+ h, we get that∫ h

0
f ′′m t dt ≤

∫ h

0
f ′′(c(t)) t dt ≤

∫ h

0
f ′′M t dt

f ′′m
h2

2
≤
∫ h

0
f ′′(c(t))t dt ≤ f ′′M

h2

2

6. Now define Ifh by

Ifh
h2

2
≡
∫ h

0
f ′′(c(t)) t dt

to get

f ′′m
h2

2
≤ Ifh

h2

2
≤ f ′′M

h2

2

which implies
f ′′m ≤ I

f
h ≤ f

′′
M .
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7. Because f ′′ is continuous on [x, x+ h],the intermediate value theorem tells us

there is a point ĉ ∈ [x, x+ h] such that f ′′(ĉ) = Ifh .

8. We immediately have that Equation (11) can be rewritten:

f(x+ h)− f(x)− f ′(x)h = f ′′(ĉ)
h2

2

= f ′′(ĉ(h))
h2

2

9. In general, we have that

f(x+ h)−
n∑
k=0

fk(x)
hk

k!
= fn+1(c(h))

hn+1

(n+ 1)!

and the proof is completely analogous except that in this case we assume that
f ∈ Cn+1 and begin with

g(x+ h)− g(x) = g′(c)h

which we apply to g(x) = fn(x) to get

fn(x+ h)− fn(x) = fn+1(c(h))h (for some c ∈ (x, x+ h))

which lets us conclude following our steps, exactly, that

fn−1(x+ h)− fn−1(x)− fn(x)h = fn+1(ĉ(h))
h2

2

which, in turn, leads by completely analogous steps to

fn−2(x+ h)− fn−2 − fn−1(x)h− fn(x)
h2

2
= fn+1(ˆ̂c(h))

h3

3!

10. We can continue this to the desired conclusion, though we usually just let c(h)
represent the function, mapping into the interval [x, x+h], that changes from
iteration to iteration.

1.6.2 Mean Value Theorem Approach II

There is a shorter proof that I may eventually stick in these notes, but it comes
straight from page 386 of Fleming’s book. It assumes slightly less: we assume only
that the function has an (n+1)’th derivative everywhere in the interval [x, x + h],
not that it is continuous. Go ahead and read that proof there.

Exercise 1.10. Write out the Taylor series centered at x = 0 for each of these
functions:
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1. sin(x)

2. cos(x)

3. tan(x)

4. arcsin(x)

5. arccos(x)

6. arctan(x)

7. ln(x)

8. ex

9. e−x
2

Exercise 1.11. How far out in the series for e−100 does one have to go to be guaran-

teed to be within 10−6 of the correct answer? That is, what N makes
∑N

i=0
(−100)i

i!
differ from e−100 by no more than 1

1,000,000?

Exercise 1.12. Given the differential equation y′′− y′+ y = 0, and y =
∑∞

i=0 aix
i,

find the ai’s and then find the solutions in terms of functions studied in Exer-
cise 1.10. Confirm these are solutions by direct differentiation and substitution into
the differential equations.

1.6.3 Derivative Definition Approach

Define

T a,kf (x) ≡
k∑
i=0

f i(a)
(x− a)k

k!

where f j = {the jth derivative of f} and f0 ≡ f .

In this subsection, we discuss that cool fact that |f(x) − T a,kf (x)| = o(|x − a|k)
even if the only thing we know is that f i(x) exists at x = a for i = 1, 2, ..., k. This is
a generalization to higher orders of the statement that if f is differentiable at a, then
f(x)− (f(a) + f ′(a)(x− a)) = o(|x− a|) where we only need that f ′ exists at a, in
order for the approximation to be true. Of course we get existence in a neighborhood
of a for lower order derivatives from the existence of higher order derivatives at a.
The source for this theorem is Kennan Smith’s interesting A Primer in Analysis.
(Every analyst should have a copy.)
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Theorem 1.2. If f i(a) exists for i = 1, 2, ..., k, then |f(x)− T a,kf (x)| = o(|x− a|k)
for some interval |x− a| ≤ δ.

Proof of Theorem 1.2.
Suppose that f i(a) exists for i = 1, 2, ..., k. We note that:

1. (T a,kf )′ = T a,k−1
f ′ .

2. if k ≥ 2, fk(a) existing, implies that f i exists in a neighborhood of x = a
for i = 1, 2, ..., k − 1 and f i is continuous for in a neighborhood of x = a for
i = 1, 2, ..., k−2 and f i. In particular, if k ≥ 3, then f(x)−f(a) =

∫ x
a f

1(t)dt.

3. Now a lemma that we will use more than once in the proof and is generally
useful in other circumstances:

Lemma 1.1. if f(x) = o(xk) then
∫ x

0 f(y)dy = o(xk+1).

Proof of Lemma 1.1.
Since f(x) = o(xk), f(x) = h(x)xk, where h(x) →

x→0
0. Define h+(x) =

sup
t∈[−x,x]

|h(t)|. Note that h+(x) →
x→0

0 and |h+(x)| ≥ |h(x)| for all x. Notice

that |
∫ x

0 h(t)tkdt| ≤ h+(x)
∫ x

0 t
kdt = h+(x)

k |x|
k+1

4. using the previous items, if k ≥ 3, then if |f ′(x) − T a,k−1
f ′ | = o(|x − a|k−1),

we conclude that
∣∣∣∫ xa (f ′(t)− T a,k−1

f ′ (t)
)
dt
∣∣∣ =

∣∣∣f(x)− T a,kf (x)
∣∣∣ = o(|x|k). So

the theorem is true for k if it is true for k − 1.

5. We note that the case of k = 1 is just the definition of derivative. We need
only prove the theorem for the case k = 2. Because, in the case that k = 2,
we cannot directly assume that f(x)− f(a) =

∫ x
a f

1(t) dt (=
∫ x
a f
′(t) dt), we

have to put a bit more work into this case.

(a) As noted above, because f2(a) exists, f1(x) = f ′(x) exists in some
neighborhood of a and we have that f ′(x) − f ′(a) − f ′′(a)(x − a) =
h(|x− a|)(x− a), where h(|x− a|)→ 0 as x→ a.

(b) Suppose that g′(y) exists for all y ∈ [a, x]. Choose ε > 0 and note
that for each point y ∈ [a, x], there is a ball B(y, δy) such that g(z) −
g(y) = K(z)(z − y) and g′(y) − ε ≤ K(z) ≤ g′(y) + ε. Because [a, x] is
compact there are a finite number of these balls (intervals!) that cover
[a, x]. We can choose yi such that a = y1 < y2 < · · · < yN = x and
g(yi+1)− g(yi) = Ki(yi+1 − yi) where g′(yi)− ε ≤ Ki ≤ g′(yi) + ε.
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(c) Apply the previous step to g = f − f ′(a)(x− a)− f ′′(a)
2 (x− a)2. We get

that |g(x) − g(a)| = |
∑

iKi(yi+1 − yi)| ≤
∑

i |Ki|(yi+1 − yi) and since
that sum is dominated by

∫ x
a h(|t− a|)(t− a) + ε dt and ε was arbitrary,

we are done after a use of the above lemma.

Exercise 1.13. Work through the details of step 5 above.

Exercise 1.14. Give an example of a function that is differentiable at x = 0 but
differentiable anywhere else.

Exercise 1.15. (Hard) Find an example of a function f : [0, 1]→ R1 that is both
differentiable everywhere and Lipschitz, such that derivative is not continuous on
a set with positive measure. (I tried proving this was not possible. That was very
hard, for a good reason – it is possible!)

1.7 Index Theory and Sard’s Theorem

Recall the simple 1-dimensional example of index theory in section 1.5:∫ 1

0

∑
x∈Xy

sign(
df

dx
(x)) dy = oriented length of f([0,1]) with cancellation

→ special case of index Theory

→ will bring up Sard’s Theorem for us

In this section, we prove that the complement of the set of regular values has
measure 0. Using the ideas we developed in section 1.4 allows us to conclude that for
almost all y ∈ [0, 1], the level sets Xy = a finite set of points. Because integrals ignore
sets of measure zero, we know that this means the above integral is well-defined.

Exercise 1.16. As a follow on to the exercises in section 1.4, show that at regular
values y, the sum ∑

x∈Xy

sign(
df

dx
(x))

is either −1, 0 or 1.
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Exercise 1.17. Use the results of the last exercise to conclude that∫ 1

0

∑
x∈Xy

sign(
df

dx
(x)) dy = f(1)− f(0)

= the oriented length of the image of f([0, 1])

Theorem 1.3 (Sard’s Theorem in R1). Suppose that f : [0, 1] → [0, 1] and f ′(x)
exists for all x ∈ [0, 1]. Define

D0 ⊂ [0, 1] ≡ {x ∈ [0, 1]|f ′(x) = 0}.

Then,
H1(f(D0)) = 0.

That is, the length of the complement of the set of regular values has length zero.

There are two ways we are going to prove this.

1.7.1 A special case of Sard’s Theorem via the 5R covering theorem

First proof of Theorem 1.3:

Proof.
Because f is differentiable, for any ε > 0, we can do the following:

1. Use the cone result (see Problem 5.1) to choose a small enough δεx > 0 for
every x ∈ D0, such that

|f(x)− f(y)| ≤ ε|x− y| when y ∈ Ûx ≡ (x− 5δεx, x+ 5δεx)

2. This last step tells us that that f maps the Ûx whose lengths are 10δεx, into
(not necessarily onto!) intervals that are no longer than ε10δεx.

3. Now define Ux = (x− δεx, x+ δεx). Notice that DO ⊂ ∪xUx.

4. Now use the 5R theorem (below) to get a countable disjoint sub-collection of
the Ux’s, {Uxi}∞i=1 such that

D0 ⊂
⋃

x∈DO

Ux ⊂
∞⋃
i=1

Ûxi
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5. Now we note that because the {Uxi}∞i=1 are disjoint,

∞∑
i=1

H1(Uxi) = H1(

∞⋃
i=1

Uxi) ≤ H1([0, 1]) = 1

and this implies that
∞∑
i=1

H1(Ûxi) ≤ 5.

6. Now we compute:

H1(f(D0)) ≤
∞∑
i=1

H1(f(Ûxi))

≤
∞∑
i=1

εH1(Ûxi)

≤ 5ε

7. Because ε was arbitrary, we can conclude that H1(f(D0)) = 0.

Now for the 5R theorem.

Theorem 1.4 (5R Covering Theorem). If E is a ball (open or closed) with center
p and radius r, let Ê denote the ball (open or closed) with center p and radius 5r.

Suppose U = {Uβ}β∈B is a (possibly uncountable) collection of balls in Rn whose
radii are bounded above by C <∞. Then there exists a countable subcollection

F = {Uβi}
NB≤∞
i=1

such that:

1. Uβi ∩ Uβj for i 6= j and

2. {Uβ}β∈B ⊂ ∪NBi=1Ûβi

Proof.
We break the proof into steps:

1. We partition the balls into subcollections: {Ek}∞k=1, where

Ek =

{
Uβ

∣∣∣∣ 1

2k
C < radius(Uβ) ≤ 1

2k−1
C

}
.
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2. Now choose a maximal sets of disjoint balls in E1: We use Zorn’s lemma to
get a maximal collection of pairwise disjoint balls in E1: Zorn’s lemma implies
that there exists, F1 a subcollection of balls in E1 such that (a) every pair of
balls {U,W} ∈ F1 are disjoint and (b) if U ∈ E1 \ F1, then U ∩W 6= ∅ for
some W ∈ F1.

3. It follows that F1 is a countable set and can be enumerated, F1 = {Uβ1
i
}N1≤∞
i=1

4. It also follows that ⋃
U∈E1

U ⊂
⋃
U∈F1

Û .

5. Now construct Fi from Ei by (a) first getting rid of all the balls in Ei that
intersect any ball in

⋃i−1
k=1 Fk and then (b) finding a maximal pairwise disjoint

collection of the balls in Ei that are left. It follows that:⋃
U∈∪ik=1Ek

U ⊂
⋃

U∈∪ik=1Fk

Û .

6. Define F ≡ ∪∞i=1Fi.

7. By the above construction F is a pairwise, countable subcollection of U whose
dilation by 5 creates of collection of balls whose union covers the union of the
balls in U .

Exercise 1.18. Look up Zorn’s lemma and make sure you understand how that
lemma gives us the maximal subcollections we use.

1.7.2 A special case of Sard’s theorem via more smoothness and
Compactness

Now we prove Theorem 1.3 with the added assumption that f ∈ C1 – not only is f
differentiable, the derivative f ′ is continuous as well.

1. Because f ′ : [0, 1] → R is now assumed continuous, we know that D0 =
(f ′)−1(0) is closed since {0} is a closed set. Since it is also bounded, DO is
compact.

2. Now use the cone result (see Problem 5.1) to choose a small enough δεx > 0
for every x ∈ D0, such that

|f(x)− f(y)| ≤ ε|x− y| when y ∈ Ux ≡ (x− δεx, x+ δεx)
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3. These open intervals {Ux}x∈D0 cover D0 and so there is a finite subcover of
D0, {Ux1 , ..., UxN }. I.e. we have D0 ⊂

⋃N
i=1 Uxi .

4. Without loss of generality, we can assume that x1 < x2 < ... < xN .

5. We can assume also that if one of the Uxi ’s is removed from {Uxi}Ni=1, the
N − 1 open intervals that remain do not cover D0.

6. We define li and ri by Uxi = (li, ri) = (xi − δεxi , xi + δεxi).

7. Because we assume none of the intervals can be left out of the cover, we can
conclude that l1 < l2 < ... < lN and r1 < r2 < ... < rN .

8. Because li+2 < ri would imply that the Uxi+1 is covered by Uxi∪Uxi+2 , we can
conclude that every point in ∪Ni=1Uxi is in at most two of the Uxi ’s, implying
that:

N∑
i=1

H1(Uxi) ≤ 2H1(∪Ni=1Uxi) ≤ 2

since
⋃N
i=1 Uxi ⊂ [0, 1].

9. Now, as before (except with a 2 instead of a 5), we have

H1(f(D0)) ≤
N∑
i=1

H1(f(Uxi))

≤
N∑
i=1

εH1(Uxi)

≤ 2ε

10. Because ε was arbitrary, we can conclude that H1(f(D0)) = 0.

Exercise 1.19. Convince yourself that the steps (4-8) above are justified. You
should sketch the situation. See Figure (2).

1.7.3 Another Exercise

Exercise 1.20. Show that the conclusion of Exercises (1.16-1.17) need not be cor-
rect if f is discontinuous, even if f is differentiable at every point except the points
where it is discontinuous and there are only a finite number of discontinuities. Show
this by showing, for any α ∈ R, how to construct a function fα : [0, 1] → [0, 1] for
which

α =

∫ 1

0

∑
x∈Xy

sign(
dfα
dx

(x)) dy
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Ux1

Ux2 ...

UxN

Ux3
is redundant

Ux4

Figure 2: Example sketch to get you thinking. Remember that the intervals
are symmetric about the xi’s shown as dots here.

1.8 Norms of Operators

Definition 1.6 (Operator Norm). Suppose that A : x ∈ B1 → y ∈ B2 where B1

and B2 are linear spaces with norms | · |1 and | · |2, and A is a linear operator. We
define the norm of the operator A to be:

|A| ≡ sup
x∈B(0,1)

|A(x)|2,

or equivalently
|A| ≡ sup

x∈∂B(0,1)
|A(x)|2,

or equivalently

|A| ≡ sup
x∈B1\{0})

|A(x)|2
|x|1

,

where B(0, 1) is the unit ball, centered in the origin in B1, so ∂B(0, 1) is the boundary
of the unit ball, the unit sphere centered on the origin.

1.9 Introduction to using Derivative Approximations

We now use the fact that the derivative approximates the function locally to (1) get
local invertibility and (2) the local parameterization of level sets. We first look at
the simplest possible cases to illustrate the ideas.
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1.9.1 Inverse Function Theorem: f : R→ R

We begin with an example of a function f : R→ R:

a

(a− δ, a + δ)

df
dx(a) 6= 0

f ((a− δ, a + δ))

Figure 3: Inverse Function Theorem - A simple, one dimensional
example: if the derivative of f is invertible at a, then, in a small enough
neighborhood of a, (a − δ, a + δ), the function itself is invertible. Technical
Details: We need to assume that not only is the derivative at a invertible
– in this case that means the slope = {1-by-1 matrix} is nonzero – we also
need the derivative function mapping points in the domain to their slopes to
be continuous at a.

Remark 1.2. We need the requirement that the derivative is continuous since it is
not too hard to come up with examples of functions that are differentiable at a point,
but not invertible in any neighborhood of that point. See Figure 4.

1.9.2 Implicit Function Theorem: f : R2 → R

The simplest example of the implicit function theorem is provided by a function from
R2 to R. The assumptions are that the derivative of f is full rank, which in this
case, means that at least one of the partial derivatives is non-zero. See Figure 1.9.2.
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y

x

y = f (x) given by black curve

tangent line

Envelope for function

Figure 4: Example of a function whose derivative at a point is invertible but
the function is not invertible in any neighborhood of that point, because the
derivative is not continuous.

Remark 1.3. Suppose for example, that fx(a) 6= 0. Then locally we can change the
value of the function by changing the value of x: if f(x∗, y∗) = c and we perturb y,
from y∗ to y∗+ ε, we will generally find that f(x∗, y∗+ ε) = c+δ but because fx 6= 0,
we can just find an η(ε) such that f(x∗+η(ε), y∗+ ε) = c. η(ε) will be approximately
given by fx(a)η(ε) ≈ −δ or η(ε) ≈ −δ

fx(a)

1.10 Inverse and Implicit Function Theorems

In addition to the full versions of the Inverse and Implicit Function Theorems, we
give an intuitive overview of manifolds which are central to nonlinear analysis.

1.10.1 Review: Rn and why we like it.

We are all acquainted with R2 and R3. Many of us have worked extensively with Rn,
usually by analogy with R2 and R3. Here are some familiar properties and things
we can do using those properties:

Vector Space: Rn is a vector space with elements of the form x = (x1, x2, ..., xn)

Inner product: The inner product of x and y, x·y or 〈x,y〉, is given by
∑n

i=1 xiyi.
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f (x, y) = c

fy = 0

fx = 0

y

x

Figure 5: Implicit Function Theorem - simple example: if the derivative
of f is full rank at some point a = (x∗, y∗) in the f = c level set, then, in a
small enough neighborhood of a, then at least one of these (non-exclusive)
cases holds: (Case 1:) There is a function of y, g(y), and a δ > 0 such that
for y ∈ (y∗ − δ, y∗ + δ) f(g(y), y) = c. (This is true if fx(a) 6= 0) (Case 2:)
There is a function of x, h(x), and a δ > 0 such that for y ∈ (y∗ − δ, y∗ + δ)
f(x, h(x)) = c. (This is true if fy(a) 6= 0) Technical Details: While the
theorem only needs the derivative to be full rank at a, if the derivative of f
is full rank on the entire level set, this means that we have local coordinates
everywhere, though sometimes only x or only y will work as local coordinates.
The derivative in our case is ∇f = (fx, fy) and being full rank means there is
at least one nonzero element of this gradient vector. We are also assuming that
the derivative is continuous, as we did in the inverse function theorem case,
because, in fact we use the inverse function theorem to prove this theorem.
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Euclidean distance: The length of a vector x is given by ||x||2 =
√∑n

i=1 x
2
i =

√
x · x, so the distance between two points is simply ||x− y||2.

Angles between vectors: Angles between vectors are given by cos(θ) = x·y
||x|| ||y|| .

Linear Transformations: A Linear transformation between Rn and Rm, which is
most often represented and computed using matrices A ∈ Rm×n, makes sense
because the Rk is a linear space for all k.

Calculus: Differentiation also makes sense because of the linear space structure of
Rn. We also use the metric structure to define volumes and integration.

All this makes life in Rn beautiful. Calculations are easy, shortest distances between
points are straight lines, and our experience with 2 and 3 dimensions, which Rn is
meant to mimic and extend, makes it all very accessible, intuitively speaking.

But the subsets of Rn we work with are often curved and contorted. k-dimensional
surfaces are everywhere, from graphs of functions to parameterized sets in Rn, from
level sets of mappings to sets in Rn that contain all possible samples of some data
set we are trying to model. On top of that, there are spaces of points that we find
natural to use and possess Rk-like properties, yet are not subsets of any Rn

The structure that comes to our rescue is the k-manifold.

1.10.2 k-Manifolds in Rn are locally like Rk

Definition 1.2 (k-manifold in Rn). Define Lk to be the k-dimensional subspace
of Rn defined by holding the last n − k coordinates equal to 0, i.e. all points in Rn
of the form (x1, x2, ..., xk, 0, ..., 0). A k-dimensional manifold Mk is a subset that is
locally like Rk. At every point x ∈Mk, there is

1. a neighborhood U ⊂ Rn containing x and

2. a diffeomorphism φx : U →W ⊂ Rn

such that

1. W is a neighborhood of 0 in Rn,

2. φx(x) = 0

3. φx(U ∩Mk) = W ∩ Lk

This definition is far from as general as possible, but for our purposes it will
work quite well. In fact, one can take this definition a long ways, and understanding
it thoroughly equips one to work with the other more general definitions out there.

The idea is that we will want to use the φ’s to enable ourselves to do calculus
on the manifold. Care must be taken, but everything works out pretty much as one
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would expect. One tool that is used over and over is the use of local approximations
to the manifolds and mappings between manifolds. The first is called the tangent
space at x, the second is DFx, the derivative or differential of F at x.

The tangent space of Mk at x is the k-plane Tx that is tangent to Mk at x. As
we zoom into Mk at x, it looks more and more like Tx: this is really just a higher
dimensional analog of the tangent line you are acquainted with from the idea of
derivatives in Calculus 1. To be a bit more precise,

Definition 1.3 (Tangent Space at x). If Mk is a k-manifold, then Tk is the
unique k-dimensional subspace of Rn such that for every ε > 0 there is an rε such
that for every point y ∈Mk ∩B(x, rε)

||PTx(y − x)|| ≥ (1− ε)||y − x||

where PTx(u) is the orthogonal projection of u onto Tx.

This definition says that given any ε and a sufficiently small ball around x, the
piece of the manifold inside that ball, Mk ∩B(x, rε), lives in a cone about Tx whose
apical half angle is cos−1(1 − ε). Thus, by making ε sufficiently small, the tangent
plane approximates Mk as well, provided we zoom in far enough.

In the next section, we review derivatives as approximations to mappings.

1.10.3 Reminder: Derivatives as linear approximations

Ordinarily, one thinks of derivatives as slopes of tangent lines or even the limit of
the ratio f(x+h)−f(x)

h as h→ 0. While this is correct for maps from R to R, another
equivalent definition turns out to be very useful. First we define o(h)

Definition 1.4. We say f(h) = g(h) + o(h) if |f(h)−g(h)|
|h| → 0 as h → 0. o(h) is

pronounced “little o of h”.

Now we can define derivatives, approximation style:

Definition 1.5 (Derivative of a map F : Rn → Rm). Given F : Rn → Rm, we
will say that F is differentiable at x ∈ Rn if there is a linear operator A : Rn → Rm
such that

F (x+ h)− F (x) = A(h) + o(h)

We denote this linear operator A by DFx.

In other words, DFx is the local, linear approximation of (∆xF )(h) = F (x +
h)− F (x), the change or increment of F at x.
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If F (x) = (F1(x), F2(x), ..., Fm(x)) is differentiable, the linear map that gives us
this approximation turns out to be the matrix of partial derivatives of F :

DFx =


∂F1
∂x1

(x) ∂F1
∂x2

(x) . . . ∂F1
∂xn

(x)

∂F2
∂x1

(x) ∂F2
∂x2

(x) . . . ∂F2
∂xn

(x)
...

...
...

∂Fm
∂x1

(x) ∂Fm
∂x2

(x) . . . ∂Fm
∂xn

(x)


Example 1.1 (F : Rn → R). In the case of a function mapping Rn to the real
numbers, we get DFx = ∇F |x: the derivative of F at x is the gradient of F at x, a
row vector made up of the partial derivatives of F .

Remark 1.4. The tangent plane of Mk at x can now be expressed quite simply.
If φx is the coordinate map of Mk at x, then Tx + x = D(φ−1

x )x(Lk), where Lk is
defined as in Definition 1.2.

When F is differentiable, it is natural to ask, “How differentiable?”

Definition 1.6. If the derivative of F exists and is continuous, then we will say F
is C1. When that derivative has a derivative that is continuous, it is C2. Likewise
when F is k-times continuously differentiable, it is Ck.

1.10.4 Review: Full rank maps

Definition 1.7 (Full Rank). Let A be an m × n matrix. Then A is full rank if
any of the following equivalent conditions are true:

1. dimension of the null space of A is max(0, n−m)

2. there are min(m,n) independent columns

3. there are min(m,n) independent rows

Remark 1.5. If a matrix is full rank, then a sufficiently small perturbation will not
change that fact.

Definition 1.8 (Level sets). The level sets of a mapping F : Rn → Rm are the
collection of sets F−1(y) ⊂ Rn for all y ∈ Rm.

Definition 1.9 (Full Rank Mapping). A mapping F : Rn → Rm is full rank on
a level set F−1(y), if DFx is full rank for all x ∈ F−1(y).

Define Wy = F−1(y). When DFx is full rank on Wy, properties of the level sets
of the derivative at points in Wy translate into properties of the nonlinear set Wy.
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Definition 1.10. When the coordinate diffeomorphisms in the definition of a k-
manifold are of Cp, then we say that the manifold is of class Cp.

Theorem 1.5 (Full Rank Theorem). Suppose that F is Cp with p ≥ 1. When
DFx is full rank on Wy = F−1(y), Wy is a Cp, k-manifold in Rn, with k =
max(0, n−m).

The Inverse and Implicit Functions Theorems (general versions in the next sec-
tion) are in fact the deeper explanation of this last theorem.

1.10.5 Finally: Inverse and Implicit function theorem in higher
dimensions

For smooth maps, the derivative gives us complete local information about the
structure of the level sets of F .

Theorem 1.6 (Inverse Function Theorem). Suppose that F : Rn → Rn, x ∈ Rn,
F is Ck, k ≥ 1 and DFx is invertible. Then there is some ε > 0 such that F :
B(x, ε)→ F (B(x, ε)) is invertible and the inverse function G : F (B(x, ε))→ B(x, ε)
is also Ck.

The basic idea is that when the map is full rank (in this case, the derivative
is invertible) the derivative’s invertibility, the fact that the derivative approximates
the nonlinear function locally, and the fact that being full rank is stable to small
perturbations all translate into the nonlinear map being invertible.

Proof.
We outline the proof: Assume without loss of generality (WLOG) that F(0) = 0.
(That is, we really are interested in showing that ∆F (h) ≡ F (x + h) − F (x) is
invertible in h if Dx(∆F ) = DxF is invertible. So, we simplly replace F with ∆F ,
noting that ∆F (0) = 0.)

1. Choose 0 < ε < 1/2

2. Define G = I −DF−1
0 ◦ F .

3. Using the fact that F is C1 we notice that the norm of DG, |DG|, is less
than ε if we stay in some small neighborhood of the origin U = B(0, δ(ε)): I.e.
||DG(h)||
||h|| < ε for all h ∈ U .

4. Define W = B(0, δ(ε)2 ).

5. Using the mean value theorem in vector spaces, we get that restricted to W ,
G is a contraction mapping with contraction constant ε.
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6. Define H = (I + G + G2 + G3 + ...). Notice that H is differentiable and
DH = I +DG+DG ◦DG+ ....

7. At this point we note that we differentiate to get linear a power series of linear
operators because we want to use this fact: if A is linear, and |A| < 1, then

I = (I −A)(I +A+A2 +A3...)

= (I +A+A2 +A3...)(I −A)

and this implies that

(I −A)−1 = (I +A+A2 +A3...).

8. Notice that D(H(I −G)) = DH ◦D(I −G) = I.

9. Now choose y ∈W . Integrating, we get:

H(I −G)(y) = H(I −G)(y)−H(I −G)(0)

=

∫ 1

0
(D(H(I −G))ty) (y)dt

=

∫ 1

0
I · ydt

= y

so that H(I −G)|W = H ◦DF−1
0 ◦ F = IW .

10. defining F̂ = H ◦DF−1
0 , we get that F̂ ◦ F = IW .

11. Note that on H(W ) ⊂ 2W = U .

12. Likewise D((I−G)H) = D((I−G)◦DH = I implying that (I−G)H|W = IW
or DF−1

0 ◦F ◦H = IW . multiplying the last equation on the left by DF0 and
on the right by DF−1

0 , we get that F ◦ F̂ = IW .

13. The Ck differentiability of F̂ follows from the Ck differentiability of F .

Theorem 1.7 (Implicit function Theorem). Suppose that F is Ck, F : Rn →
Rm, m < n, and DF is full rank at x∗ ∈ Rn. We will denote the first m coordinates
by x′ and the last n −m by x′′ so that x = (x′, x′′). Suppose further, without loss
of generality, that the first m columns of DF are independent. Then there is an
ε > 0 and a Ck mapping g : Rn−m → Rm such that F (g(x′′), x′′) = F (x∗) for all
x′′ ∈ Rn−m such that ||x′′ − (x∗)′′|| < ε.
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Proof.
The idea of the proof is simple: we augment F to get an invertible transformation
and then fiddle with it. Define F̂ : Rn → Rn by F̂ (x) = (F (x), x′′). Now we note that
DF̂x∗ is invertible so that there is an inverse of F̂ , G(y) = (g(y′, y′′), y′′). Computing
F̂ ◦G(y) (= y) we have F̂ (G(y)) = (F (g(y′, y′′), y′′), y′′) = (y′, y′′) for all y = (y′, y′′)
in some neighborhood of (F (x∗), x∗′′). Looking at the first component only, we have
F (g(y′, y′′), y′′) = y′. Fixing ĝ(y′′) = g(F (x∗), y′′), we get that F (ĝ(y′′), y′′) = F (x∗)
for all ||y′′ − x∗′′|| < ε for some sufficiently small ε > 0.

Example 1.2. Consider some function f mapping Rn to R. Then in order to apply
the implicit function theorem at some point x∗, we need Df = ∇f to be full rank at
x∗. Since min(m,n) = 1, at least one component of the gradient needs to be non-zero
at x∗ in order to conclude that locally, the level set through x∗ is an (n−1)-manifold.

1.10.6 Implicit Function Theorem, Intuitively, Again

The idea behind the implicit function theorem is that:

Full Rank if I am at some point x∗ on the c-level set of f : Rn+k → Rn and
Dx∗f is full rank, I know that, after possibly relabeling the coordinates, the
first n columns of the derivative matrix for Dx∗f form a non-singular n-by-n
submatrix.

Invertible + C1 means ... If we let x ∈ Rn+k be represented by x = (x′, x′′)
where x′ ∈ Rn and x′′ ∈ Rk, we have that

Dxf(x∗) = [Dx′f(x∗) Dx′′f(x∗)]

where Dx′f(x∗) is an n-by-n matrix and Dx′′f(x∗) is an n-by-k matrix, and
Dx′f(x∗) maps the first n variables in Rn+k invertibly onto the range of f :
we can get anywhere in the range by putting the correct input into Dx′f(x∗).
Because f is C1, we know that the derivative Dx′f(x∗+h) is also non-singular
for small enough h: |h| < ε for some ε > 0.

What is boils down to: if we know that f(x∗) = f(x∗
′
, x∗

′′
) = c and we now that

Dx′f(x∗) is invertible (because Df is full rank at x∗), then we know that

1. f(x∗
′
, x∗

′′
) = c

2. If we perturb (i.e. change) x∗
′′

by a small η
′′ ∈ Rk to get x∗

′′
+ η

′′
, f

will change from c to c+ δ for some small δ.

3. That is: f(x∗
′
, x∗

′′
+ η

′′
) = c+ δ.

4. Now, because Dx′f(x∗
′
, x∗

′′
+ η

′′
) is non singular, the inverse function

theorem says that for any small enough δ in the range, there is a unique
small η

′
, such that f(x∗

′
+ η

′
, x∗

′′
+ η

′′
)− f(x∗

′
, x∗

′′
+ η

′′
) = −δ.

37



5. Since η
′

depends on η
′′
, we write η

′
= g(η

′′
)

6. We arrive at

f(x∗
′
+ g(η

′′
), x∗

′′
+ η

′′
) = f(x∗

′
+ g(η

′′
), x∗

′′
+ η

′′
)− f(x∗

′
, x∗

′′
+ η

′′
)

+ f(x∗
′
, x∗

′′
+ η

′′
)

= −δ + (c+ δ)

= c

7. Because g : Rk → Rn, we see that for some small enough ε > 0, the set,
B(x∗, ε)∩{x = (x′, x′′) | c = f(x′, x′′)} is actually the set B(x∗, ε)∩{x =
(g(x′′), x′′) | c = f(g(x′′), x′′). But because x′′ ∈ Rk this implies that the
set is k-dimensional. The crucial fact is that x′′ → (g(x′′), x′′) is an
invertible map.

Details The smoothness of the function g : Rk → Rn follows from the properties
of the inverse function theorem.

1.10.7 Using the Implicit Function Theorem: Co-Dimension 1

How would you use the implicit function theorem? Here is a pseudo-computational
explanation, by which I mean that it leans towards computation, but is actually
intended to give a deeper idea of what the theorem means and give someone a path
to investigate for computational purposes. We explore the co-dimension 1 case.

1. So you are given a function f : Rn → R and a level α and a point x̂ ∈ f−1(α).

2. You need to know that Dx̂f = ∇x̂f is full rank, which in the case of 1 by
n matrices (i.e. row vectors, which is what a gradient is) we simply want to
know that one of the partial derivatives of f at x̂ is not equal to zero.

3. (Actually, if α is a regular value of f, then we know this since this means, by
definition, that the derivative of f is full rank at every point in f−1(α). But
we actually only need f differentiable at x̂)

4. We also need that f ∈ C1 – the derivative exists and is continuous.

5. Now, rotate the coordinates so that the gradient vector of f points in the di-
rection of the nth coordinate axis. I.e. rotate Rn so that ∇x̂f = β(0, 0, ..., 0, 1)
where β = |∇x̂f |.
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6. Now we note that the gradient is normal to the α-level set f−1(α) which is
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the same statement as “the planes defined by the gradient vector are tangent
to the level surface”. This tangent plane is determined by the gradient vector
as follows.

7. Define

N =
∇x0f
|∇x0f |

.

8. As long as the gradient is not horizontal – by which we mean that it has an
nth coordinate = 0 – then we can write the nth coordinate as a function the
first n-1 coordinates:

N = (N1, N2, ..., Nn)

N · (x− x0) = 0

N1x1 +N2x2 + · · ·+Nnxn = N ·X0

= C

See the example in 3 dimensions ...
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9. Now we apply these insights to rotated level set and the now vertical gradient
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vector, which is therefore normal to a horizontal tangent plane at the rotated
point that we again denote by x̂.

10. Let x̂ = (x̂′, x̂n) ≡ (x̂1, x̂2, · · · , x̂n−1, x̂n) and note that x̂′ ∈ Rn−1. We also
represent any x in the rotated frame by x = (x′, xn), x′ ∈ Rn−1 and we let x0

be any point on f−1(α).

11. Note that because f ∈ C1 we know that for some little ball in the space of
the first n-1 coordinates, B(x̂′, ε) centered at x̂′ in the horizontal Rn−1, the
gradient is not too far from vertical.
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12. Here is a short argument: we know that the surface tangent planes Hx0(x),
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thought of as functions from Rn−1 → R, have small gradients eveyrwhere
because from the example above, for x′0 ∈ B(x′, ε)

∇Hx0(x′) = (
f1(x0)

fn(x0)
,
f2(x0)

fn(x0)
, . . . ,

fn−1(x0)

fn(x0)
)

and at x̂ we have that

0 = f1(x̂) = f2(x̂) = f3(x̂) = · · · = fn−1(x̂)

and
β = fn(x̂) 6= 0.

Because the first n-1 partial derivatives are continuous, they remain small in
a small ball about x̂′.

13. because of this, we know that g, which is the function the implicit function
theorem gives us

f(x1, x2, · · · , xn−1, g(x1, x2, · · · , xn−1)) = α

is Lipschitz with small Lipshitz constantK = |(k1, k2, ..., kn−1)| where |f1(x0)| ≤
k1 and |f2(x0)| ≤ k2 and |f3(x0)| ≤ k3 and etc.

14. ... and we can solve for g at any point x′ + h, for any h ∈ Rn−1 and |h| ≤ ε,
there is a small y such that f(x′ + h, y) = α.

15. Thus we can shoot vertically at x′ + h to find the point where f = α.
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16. We can actually use this argument to prove that a g exists that is
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Lipschitz and satisfies

f(x1, x2, · · · , xn−1, g(x1, x2, · · · , xn−1)) = α

in a neighborhood of x̂.

Exercise 1.21. Convince yourself that there is a Lipschitz function g, using only
the fact that the normals are close to vertical near x̂, such that

f(x1, x2, · · · , xn−1, g(x1, x2, · · · , xn−1)) = α

for x′ ∈ B(0, ε) Hint: think about it geometrically ... go ahead and do this when
n = 2 so you can draw it easily and think about the drawings.

2 Integration

On this section, we dive into the integration of functions by motivating the intro-
duction of the Lebesgue integral (and measure) using a function which is 1 on the
rationals and 0 on the irrationals.

2.1 Riemann vs Lebesgue

We begin with an observation that there are functions we would like to integrate
(at least for theoretical purposes) that do not have Riemannian integrals.

Define the function fQ(x) by:

fQ : [0, 1]→ [0, 1] ≡
{

1 (when x ∈ Q ∩ [0, 1])
0 (when x ∈ [0, 1] \Q)

Now recall that, given a partition P of the domain [0, 1] into sequential intervals by
the points

0 = p0 < p1 < p2 < p3 < ... < pm = 1,

the Riemann upper and lower integrals are defined to be:∫
∗
f(x) dx ≡ sup

P∈P

(
m−1∑
i=0

(pi+1 − pi) inf
y∈[pi,pi+1)

f(y)

)
(12)

∫ ∗
f(x) dx ≡ inf

P∈P

(
m−1∑
i=0

(pi+1 − pi) sup
y∈[pi,pi+1)

f(y)

)
(13)

where P is the family of all finite partitions of [0, 1]. We say that f is Riemann
integrable if

∫ ∗
f(x) dx =

∫
∗ f(x) dx.
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Exercise 2.1. Show that for any two partitions of [0, 1], P = {pi}mi=0 and Q =
{qi}ki=0, (

m−1∑
i=0

(pi+1 − pi) sup
y∈[pi,pi+1)

f(y)

)
≥

(
k−1∑
i=0

(qi+1 − qi) inf
y∈[pi,pi+1)

f(y)

)

Exercise 2.2. Show that 1 =
∫ ∗
fQ(x) >

∫
∗ fQ(x) = 0.

But it seems completely sensible to say that
∫ 1

0 fQ = 0. The solution to this
problem turns out to be simple: we simply partition the range, instead of the domain.

For now we will assume an intuitive grasp of the idea of µ(E), the measure of
a set E, for now – it really is just what you think it should be, a fact that will
be made clear in the next section when we define outer measures and a couple of
specific families of measures on Rn.

Suppose that we partition a set A ⊂ Rn into A = ∪Ni=1Ei, Ei ∩ Ej = ∅ for all
i 6= j, where N̂ = ∞ is a possibility. Suppose further that χE : Rn → R is the
characteristic function on E: i.e. χE(x) = 1 when x ∈ E and χE(x) = 0 when

x ∈ Ec. Now, for any non-negative sequence {αi}N̂i=1 (αi ≥ 0 for all i) we define a
simple function s(x) by

s(x) =
N̂∑
i=1

αiχEi(x).

We now define the integral of f(x) to be

∫
s(x) dµx ≡

N̂∑
i=1

αiµ(Ei).

Now letting s(x) denote a simple function, we define∫ ∗
fdµ = inf

s:s(x)≥f(x)∀x

∫
s(x) dµ

and ∫
∗
fdµ = sup

s:s(x)≤f(x)∀x

∫
s(x) dµ.

Definition 2.1 (Lebesgue Integrable Functions). Define f+(x) ≡ max{0, f(x)} and
f−(x) ≡ max{0,−f(x)}. Then
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1. We say that f ≥ 0 is Lebesgue integrable if
∫ ∗
fdµ =

∫
∗ fdµ. See Figure (2.1)

2. We say that f is Lebesgue integrable if both f+(x) dµ and
∫
f−(x) dµ are.

In this case, we define
∫
f dµ =

∫
f+ dµ−

∫
f− dµ with the convention that

∞−∞ =∞.

Returning to the integration of any function f : [0, 1] → [0, 1], pick a positive
integer M <∞ and notice that if we define Ei = f−1([ i−1

M , i
M )) for i = 1, ...,M and

then define

su(x) ≡
M∑
i=1

i

M
χEi(x)

and

sl(x) ≡
M∑
i=1

i− 1

M
χEi(x)

we have that

1. su(x) ≥ f(x) for all x ∈ [0, 1] and

2. sl(x) ≤ f(x) for all x ∈ [0, 1],

3. which allows us to conclude that∫
su(x) dµ−

∫
sl(x) dµ =

1

M
→ 0
M→∞

implying that f is integrable.

Exercise 2.3. Convince yourself (i.e. prove) that if s(x) and r(x) are two simple
functions such that s(x) ≤ f(x) ≤ r(x) for all x, then

∫
A s dµ ≤

∫
A r(x) dµ. Note

that we are defining the integrals here, so you have to be careful to not assume what
you are trying to prove.

Exercise 2.4. Show that
∫
fQ(x) dµ exists and equals 0.

It turns out that the one thing we have assumed – that µ(Ei) makes sense for any
Ei ≡ f−1([a, b)) – opens up an important subject for us to look into more carefully.
The reason for that is, if we assume that µ makes sense for all subsets of Rn we run
smack dab into the Banach-Tarski paradox implying that we cannot let all sets be
“measurable” if we want to have those measurements mean something.

Exercise 2.5. Look up the Banach-Tarski Paradox on Wikipedia and read about
it.
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I4
...

I1

I2

I3

...

· · ·
· · ·

E1 E1 E3 E4 · · ·

E3 = f−1(I3)

E4 = f−1(I4)

E2 = f−1(I2)

E1 = f−1(I1)

Figure 6: Riemann versus Lebesgue Integration: the upper figure illus-
trates the partition of the domain dictated by the Riemannian approach. The
green and red rectangles live completely below the graph of f . Call the area
they sum to Alower(P ) where P is the partition. The red and green plus the
cyan rectangles live completely above the graph. Call their area Aupper. If
supP Alower(P ) = infP Aupper then f is Riemann integrable. The lower figure
illustrates that key difference for the Lebesgue case: we partition the range
and pull that back by f−1 to a partition of the domain. It turns out that this
is exactly what is needed to make all reasonable functions integrable. Now
Alower(P ) =

∑
i aiµ(Ei) and Aupper(P ) =

∑
i biµ(Ei) where P is a partition of

the range into the intervals Ii = [ai, bi).
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Remark 2.1 (Summable versus Integrable). We will say a function f is summable
if it is integrable and the integral of the function is finite.

Exercise 2.6. A function f : Rn → R is said to be measurable if the set f−1(I) is Ln
measurable whenever I is a (possibly infinite) interval. Suppose that the support of
f is bounded. Show that the Riemann integral

∫
f(x) dx exists when f is continuous,

but that it is even easier to show that the Lebesgue integral
∫
f(x) dL1x exists when

f is merely measurable. Hint: A continuous function on a compact set is uniformly
continuous.

Remark 2.2. Note that we are motivating the next section with this last exercise:
what does it mean for E to be measurable, other than that µ(E) “makes sense”? To
find the answer we will use, read on ...

2.2 Outer Measures

The approach to measure theory I like closely follows the approach used by Evans’
and Gariepy in their Measure Theory and Fine Properties of Functions – a book I
very highly recommend for anyone interested in analysis.

Definition 2.2 (Outer Measure). Any function, µ mapping subsets of a space X
to [0,∞] – µ : 2X → [0,∞] – satisfying the following two rules is called an Outer
Measure:

1. µ(∅) = 0

2. µ(E) ≤
∑N

i=1 µ(Fi) where E ⊂ ∪iFi and 0 < N ≤ ∞

Both families of measures we use in this class – the Lebesgue measures and the
Hausdorff measures – are outer measures. Because of the Banach-Tarski Paradox,
we know that we cannot just let every set into the club of sets whose outer measure
is meaningful.

Definition 2.3 (Measurable Sets). If a set E ⊂ X has the property that for all
A ⊂ 2X :

µ(A) = µ(A ∩ E) + µ(A ∩ Ec)

we say that E is µ-measurable or simply measurable if the µ is clear from the context.

The idea is that E slices every set up in a sensible way.

Exercise 2.7. (Easy consequences of the definition of measurability) Show
that the definition of measurability easily gives us (1) that E measurable⇒ Ec; and
(2) X and ∅ are measurable.
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Remark 2.3. Note that we always have that

µ(A) ≤ µ(A ∩ E) + µ(A ∩ Ec)

so we only need to show

µ(A) ≥ µ(A ∩ E) + µ(A ∩ Ec)

to prove that
µ(A) = µ(A ∩ E) + µ(A ∩ Ec)

Exercise 2.8. Show that if µ(E) = 0, then E is measurable.

Definition 2.4 (σ-algebra of sets). a collection of sets A is a σ-algebra if:

1. ∅, X ∈ A

2. A ∈ A ⇒ X \A = Ac ∈ A

3. Every set in the sequence {Ai}∞i=1 are in A implies that ∪∞i Ai ∈ A.

Theorem 2.1 (Properties of Measures). Suppose that {Ei}∞i=1 is a sequence of
measurable sets. Then we have that:

1. ∪∞i Ei and ∩∞i Ei are measurable.

2. The collection of sets which are measurable form a σ-algebra.

3. If {Ei}∞i=1 are pairwise disjoint – Ei ∩ Ej∅ when i 6= j – then

µ (∪∞i Ei) =

∞∑
i=1

µ(Ei).

This property is called countable additivity.

4. If E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ Ek+1 ⊂ · · · then

lim
i→∞

µ(Ei) = µ (∪∞i Ei) .

5. If if µ(E1) <∞ and E1 ⊃ E2 ⊃ · · · ⊃ Ek ⊃ Ek+1 ⊃ · · · then

lim
i→∞

µ(Ei) = µ (∪∞i Ei) .
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2.2.1 Lebesgue and Hausdorff Measures

The d-dimensional Lebesgue measures are constructed by using d-dimensional rect-
angles to cover E ⊂ Rd and taking an infimum. We define an open rectangle R to
be

R = R(x∗, ε∗) = {(x1, x2, ...xd) ∈ (x∗1, x
∗
1 + ε1)× (x∗2, x

∗
2 + ε2)× · · · × (x∗d, x

∗
d + εd)}

and its content c(R) to be the product of the side-lengths of the rectangle = its
usual d-volume:

c(R) = ε1ε2 · · · εd = Πd
k=1εk.

We can now define:

Definition 2.5 (Lebesgue Measure).

Ld(E) ≡ inf
{R|E⊂∪iRi}

∑
c(Ri)

where we are minimizing over allR, the countable covers of E by open rectangles:
R = {Ri}∞i=1. The following four exercises are also given as the third problem for
the course:

Exercise 2.9. Show that Ld(S) = 0 for any S = x ∈ Rd such that xi = c – the
d-1-dimensional plane obtained by holding the i-th coordinate constant.

Exercise 2.10. Show that if µ(D) = 0, then µ(C ∪D) = µ(C)

Exercise 2.11. Show that the measure of any rectangle when some or all of the
intervals defining it are not open is the same as the corresponding open rectangle.

Exercise 2.12. Show that for any rectangle R ⊂ Rd,

Ld(R) = c(R).

Hint: take the closed rectangle R̄ corresponding to R and notice that any cover
with open rectangles has a finite subcover also covering R̄.

Now we define the family of Hausdorff outer measures. Now we can take any
countable cover of a set E and then measure each by the volume of the ball having
he same diameter. For any real number η ∈ [0,∞), we define:
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Definition 2.6 (Hausdorff Measures, Hη).

Hηδ (E) ≡ inf
{Fi}∞i=1|E⊂∪iFi and supi(diamFi)≤δ

α(η)
∑
i

(
diamFi

2

)η
and then

Hη(E) = lim
δ→0
Hηδ (E).

Note that α(η) = πη

2ηΓ( η
2

+1)
, the η-volume of the “η-dimensional” unit ball. This

number agrees with the usual volume when η is an integer.

It turns out that when η is a non-negative integer, Lη = Hη. (See Evans and
Gariepy’s book for a proof of this fact.) The first thing we will prove is that for any
fixed E ⊂ Rn, the graph of Hη(E) versus η looks like the graph in Figure (7).

d∗

∞

0

Hk(E)

k

Figure 7: Graph of the Hausdorff measure Hk(E) of a set E as we vary k, the
dimension of the measure. We define d∗, where the measure switches from ∞
to 0 to be the dimension of the set E.

Theorem 2.2 (Definition of Hausdorff Dimension). Suppose that E ⊂ Rn for some
n < ∞. Then Hk(E) = 0 for k > d∗ for some d∗ ≤ n and, if d∗ > 0, Hk(E) = ∞
for k < d∗. This is illustrated in Figure (7).

Remark 2.4. It turns out that there are E’s, such that Hd∗(E) is any number
between and including 0 and ∞.

Proof.
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1. First we show if 0 ≤ Hk(E) <∞ then Hk+η(E) = 0 for any η > 0.

(a) Choose ε > 0

(b) Choose 0 < δ < 1 such that
(
δ
2

)η
< ε.

(c) By the definition of Hausdorff measure, there is a δε < δ such that∣∣∣Hkδε(E)−Hk(E)
∣∣∣ < ε/2

(d) There is also a cover {Fi}∞i=1 ∈ Fδε such that∣∣∣∣∣Hkδε(E)− α(k)
∑
i

(
diamFi

2

)k∣∣∣∣∣ ≤ ε/2
(e) We get that ∣∣∣∣∣Hk(E)− α(k)

∑
i

(
diamFi

2

)k∣∣∣∣∣ ≤ ε
from which we get that

α(k)
∑
i

(
diamFi

2

)k
≤ Hk(E) + ε

(f) Now we note that this implies that

α(k)
∑
i

(
diamFi

2

)k+η

= α(k)
∑
i

(
diamFi

2

)k (diamFi
2

)η
≤ α(k)

∑
i

(
diamFi

2

)k (δ
2

)η
< α(k)

∑
i

(
diamFi

2

)k
ε

≤ (Hk(E) + ε)ε

(g) This implies Hk+η
δ (E) < ε(Hk(E) + ε)

(h) Since ε > 0 was arbitrary and Hk(E) <∞, we conclude that Hk+η
δ (E) =

0

(i) But δ can be chosen arbitrarily small, implying that

Hk+η(E) = lim
δ→0
Hk+η
δ (E) = 0
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2. Suppose that H0(E) < ∞. Then what we just proved shows that we have
that Hk(E) = 0 for all k > 0 and we are done.

3. Exercise: show that Hn+1(Rn) = 0 where we are considering Rn to be equal
to {(x1, ..., xn+1|xn+1 = 0} ⊂ Rn+1.

4. Suppose that H0(E) =∞. Define d∗ ≡ sup{x < n+ 1|Hx(E) =∞}.

5. Using the result we proved first, we get that

Hd∗+η/2 <∞⇒ Hd∗+η = 0.

6. For any η > 0 there must be a 0 < δ < η such that Hd∗−δ =∞, implies that
Hd∗−η = ∞. Otherwise, because d∗ − η < d∗ − δ, if Hd∗−η < ∞ we would
have Hd∗−δ = 0.

7. We conclude that Hk(E) =∞ for k < d∗ and Hk(E) = 0 for k > d∗.

Exercise 2.13. Show that set

E ≡ {(x1, x2, x3) | x1 ∈ [0, 1], x2 ∈ [0, 1], x3 = 0}

– a 2 dimensional square embedded in R3 – satisfies H3(E) = 0.

Exercise 2.14. Show that you can assume the sets used to generate the covers in
the Hausdorff definition are convex. Hint: show that for any E ⊂ Rn,

diam(E) = diam(cnv(E))

where diam(A) denotes diameter of a set A and cnv(A) denotes the convex hull of
a set A. Do this by showing:

• For the set to have finite diameter, it must be bounded

• that because E ⊂ cnv(E), diam(E) ≤ diam(cnv(E))

• that there is a sequence of pairs of of points in cnv(E), {pi, qi}∞i=1 such that
|pi − qi| → diam(cnv(E)).

• there is a subsequence i(k) such that pik → p∗ and qik → q∗ and |p∗ − q∗| =
diam(cnv(E)).

• that the projection of E onto the line Lp∗,q∗ through p∗ and q∗ has diameter
at most diam(E).
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• Define the smallest interval, in Lp∗,q∗ , containing this projection to be P and
show that E lives between the two n − 1-dimensional planes orthogonal to
Lp∗,q∗ through the endpoints of P .

• Conclude that cnv(E) also must be contained between the two n−1-dimensional
planes orthogonal to Lp∗,q∗ through the endpoints of P (since cnv(E) = in-
tersection of all convex sets containing E and the set of points between and
including the two planes is convex).

• Therefore, we must have the that

diameter of cnv(E) = |p∗ − q∗|
= diameter of projection of cnv(E) onto Lp∗,q∗

≤ diam(P )

≤ diam(E)

Exercise 2.15. Show that you can assume the sets used to generate the covers in
the Hausdorff definition are open. Hint: show that ...

1. For any cover of a set E, {Fi}∞i=1, the sets

F̂i ≡ B(Fi, δi) ≡ ∪x∈FiB(x, δi)

are open. (Reminder: B(x, η) = open ball of radius η centered at x).

2. Now assume that {Fi}∞i=1 is a cover of E and show that if we define

δi =

((
diam(Fi)

2

)d
+ εi

) 1
d

− diam(Fi)

2

then (
diam(Fi)

2
+ δi

)d
=

(
diam(Fi)

2

)d
+ εi

3. Use this to show

α(d)
∞∑
i=1

(
diam F̂i

2

)d
≤ α(d)

∞∑
i=1

(
diamFi

2

)d
+ α(d)

ε

1− ε
.

4. Use this to deduce that the infimum over arbitrary covers is the same as the
infimum over arbitrary covers.
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Exercise 2.16. Show that we may also restrict ourselves to closed sets when cov-
ering a set in order to compute Hausdorff measures. Hint: If we denote the closure
of E by Ē, you simply need to show that diam(E) = diam(Ē).

Exercise 2.17. Suppose that S = a line segment in Rn, n ≥ 2. You can assume
that the line segment is a subset of the x1 axis. I.e. S = [a, b]×{0}× · · ·×{0}. Use
the results in Exercises 2.14 and 2.15 to prove that the H1(S) = b− a. Hint: Use
the fact that S is compact to covert every cover to a finite cover.

2.2.2 Caratheodory Criterion

There is a very useful criterion that tells us when the Borel sets are measurable is
the Caratheodory Criterion:

Theorem 2.3 (Caratheodory Criterion). If µ is an outer measure on Rn and we
know that dist(A,B) > 0 ⇒ µ(A ∪B) = µ(A) + µ(B), then µ is a Borel measure
– i.e. all Borel sets are measurable.

Proof.
If we show that all closed sets are measurable, then, because the class of measur-
able sets is a σ-algebra, we know all open sets are also measurable. Therefore the
measurable sets contains the smallest σ-algebra containing the open sets – the Borel
σ-algebra.

1. Let A be an arbitrary set in X and C be a closed set.

2. The result is immediate if µ(A) =∞, so assume µ(A) <∞.

3. Define

Cn = {x ∈ Rn | dist(x,C) ≤ 1

n
}

where dist(x,C) is the distance from x to the set C.

4. Because dist(C,Ccn) = 1
n > 0, we know that

µ(A) ≥ µ({A ∩ C} ∪ {A ∩ Ccn}) = µ(A ∩ C) + µ(A ∩ Ccn)

5. Define

Ai = {x ∈ A | 1

i+ 1
< d(x,C) ≤ 1

i
}.

Then
A = {A ∩ C} ∪ {A ∩ Ccn} ∪ {∪∞i=nAi}.

6. Our aim is to show that

µ(A) ≥ µ(A ∩ C) + µ(A ∩ Cc)
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7. but because of Step 4 above and {A∩C}∪ {A∩Cc} ⊂ {A∩C}∪ {A∩Ccn}∪
{∪∞i=nAi} we know that

µ(A) +

∞∑
i=n

µ(Ai) ≥ µ(A ∩ C) + µ(A ∩ Ccn) +

∞∑
i=n

µ(Ai)

≥ µ(A ∩ C) + µ(A ∩ Cc)

8. All we need to do now is show that
∑∞

i=1 µ(Ai) < ∞ which implies that∑∞
i=n µ(Ai)→ 0 which then implies that

µ(A) + ε ≥ µ(A ∩ C) + µ(A ∩ Cc)

for all ε > 0.

9. But, defining A′n = A1 ∪A3 ∪A5 ∪ ... ∪A2n+1 A
′′
n = A2 ∪A4 ∪A6 ∪ ... ∪A2n

and noting that for all n, we have

• µ(A) ≥ µ(A′n)

• and by the hypothesis dist(A,B) > 0 ⇒ µ(A ∪B) = µ(A) + µ(B) we
have

µ(A′n) = µ(A1 ∪A3 ∪A5 ∪ ... ∪A2n+1)

= µ(A1) + µ(A3) + µ(A5) + ...+ µ(A2n+1)

• and µ(A) ≥ µ(A′′n)

• and by the hypothesis dist(A,B) > 0 ⇒ µ(A ∪B) = µ(A) + µ(B) we
have

µ(A′′n) = µ(A2 ∪A4 ∪A6 ∪ ... ∪A2n)

= µ(A2) + µ(A4) + µ(A6) + ...+ µ(A2n)

• we conclude that
∑∞

i=1 µ(Ai) ≤ 2µ(A).

10. We are done!

Exercise 2.18. Show that Lebesgue measure of a set can be found be restricting
yourself to covers with rectangles whose side-length is bounded by any δ > 0.

Exercise 2.19. Show that both Lebesgue and Hausdorff measures are Borel Reg-
ular.
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2.2.3 Radon Measures and Approximation

Recall that the Borel sets are any subset in the smallest σ-algebra of sets containing
the open sets.

Definition 2.7 (Regular, Borel, Radon ...). Suppose that µ is an outer measure on
X = Rn.

Regular If, for every set A ⊂ X, there is a measurable set B, such that A ⊂ B
and µ(A) = µ(B), then we say µ is a regular measure.

Borel If every Borel set is measurable by µ, we say that µ is a Borel measure.

Borel Regular If µ is a Borel measure and for every set A ⊂ X, there is a Borel
set B, such that A ⊂ B and µ(A) = µ(B), then we say µ is a Borel regular
measure.

Radon If µ is a Borel Regular measure and µ(K) <∞ for all compact sets K, we
say that µ is a Radon measure.

The following approximation property of Radon measures is very useful.

Theorem 2.4 (Approximation of Radon Measures). Suppose that µ is a Radon
Measure. Then

1. We can approximate from the outside with open sets: For any set E ⊂ Rn,

µ(E) = inf{µ(O) | E ⊂ O, O is open}

2. We can approximate from the inside with compact sets: For any measurable
set E ⊂ Rn,

µ(E) = sup{µ(K) | K ⊂ E, K is compact}

Exercise 2.20. Show that Hausdorff measures satisfy part 1 of Theorem 2.4 ... I.e.
the measure of a set is approximated by open sets from outside.

2.3 Measurable Functions and Integration

Lebesgue integration is the typical choice of analysts when they want to think about
integrating things. But it is not the only choice. Daniell integrals, Steltjes integrals,
and a bunch of others are out there, all with their particular uses and enthusiasts.
Our approach here is pragmatic: Lebesgue works for most things and for those
things we will use it. When it doesn’t quite fit the bill, we use what does work.

So, what is Lebesgue integration and how does it differ from Riemann integra-
tion? As you have already seen, in Riemann integration, we partition the domain
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into regular subsets (intervals or rectangles) and take the the largest and smallest
functional values attained in each subset, multiply these values by the measure of
those subsets and sum these up, after which we take infimums and supremums:∫ ∗

fdµ ≡ inf
P

∑
i

sup
x∈Ii

f(x)µ(Ii)

∫
∗
fdµ ≡ sup

P

∑
i

inf
x∈Ii

f(x)µ(Ii)

where P is the partition of the domain into intervals Ii. If
∫ ∗
fdµ =

∫
∗ fdµ then we

say f is Riemann integrable.
In Lebesgue integration, we parition the range into intervals Ii and pull them

back to a partition of the domain: Ei = f−1(Ii). (This paritition can be very far
from regular!) We get:∫ ∗

fdµ ≡ inf
P

∑
i

(
sup
y∈Ii

y

)
µ(f−1(Ii)) = inf

P

∑
i

biµ(f−1(Ii))

∫
∗
fdµ ≡ sup

P

∑
i

(
inf
y∈Ii

y

)
µ(f−1(Ii)) = sup

P

∑
i

aiµ(f−1(Ii))

We are rewarded for our change in pespective by the result that now, every re-
spectable function is integrable! (By integrable we will mean the upper and lower
integrals are equal). As a result, we like the Lebesgue integral and are not so in-
clined to like the Riemann integral, even though for many practical purposes they
are indistinguishable (because for really nice functions, they are the same.) Figure 8
illustrates both versions of integration.

2.3.1 Lebesgue Integration

Now we work through the definition of Lebesgue integration a bit more slowly and
carefully. We will do this in three steps:

1. Define step functions caefully (We’ll call them simple functions).

2. Define integrals of step functions.

3. Approximate general functions using step functions and define the integeal of
the function as the limit of the integals of the approximating step functions.
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I4
...

I1

I2

I3

...

· · ·
· · ·

E1 E1 E3 E4 · · ·

E3 = f−1(I3)

E4 = f−1(I4)

E2 = f−1(I2)

E1 = f−1(I1)

Figure 8: Riemann versus Lebesgue Integration: the upper figure illus-
tates the partition of the domain dictated by the Riemannian approach. The
green and red rectangles live completely below the graph of f . Call the area
they sum to Alower(P ) where P is the paritition. The red and green plus the
cyan rectangles live completely above the graph. Call their area Aupper. If
supP Alower(P ) = infP Aupper then f is Riemann integrable. The lower figure
illustrates that key difference for the Lebesgue case: we partition the range
and pull that back by f−1 to a partition of the domain. It turns out that this
is exactly what is needed to make all reasonable functions integrable. Now
Alower(P ) =

∑
i aiµ(Ei) and Aupper(P ) =

∑
i biµ(Ei) where P is a parition of

the range into the intervals Ii = [ai, bi).
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2.3.2 Simple Functions

From one point of view, the simplest function we can define is a function that takes
on the value 1 on a some set E and 0 on the complment of E, Ec ≡ x ∈ Rn \E. We
call such a function the characteristic function of E and we denote it by χE.

χE(x) ≡
{

1 if x ∈ E
0 if x ∈ Ec

Now we can build any step function we might want to build by scaling charac-
teristic functions and adding them together. One way to do this is to partition the
domain Rn into a countable collection of sets {Ei}Ni=1 where N ∈ {Z+ ∪∞}. This
yields:

g(x) ≡
∑
i

αiχEi
(x).

We call any such step function a simple function . An equivalent definition defines
simple functions g : Rn → R to be those functions that take on at most a countable
number of values.

2.3.3 Integrating Simple Functions

It should seem completely natural to define the integral of χE to be the measure of
E – it agrees with the intuition of area under the graph, supported by our definition
of the area of rectangles to be width times height. And so this is what we do:∫

αχE dµ ≡ αµ(E).

If g is a simple function with representation g(x) =
∑

i αiχEi
(x), this leads us to

define the integral of the simple function gintegral of a simple function to be:∫
g dµ ≡

∑
i

αiµ(Ei).

Note: we will require that the Ei’s partition the domain and we will define 0 · ∞ =
∞ · 0 = 0.

2.3.4 Integrating Arbitrary Functions

Above, we are measuring sets like Ei = g−1(αi), the inverse image of a point in
the range of g. More generally, we will work with inverse images of Borel sets and
we would like the f ’s we work with to have the property that such subsets of the
domain are always measurable. If they are, we say f is a µ-measurable function :

Definition 2.1 (measurable functions). If E = f−1(B) is a µ-measurable subset of
Rn for all Borel B ⊂ R, then f : Rn → R is said to be measurable.
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Unless otherwise indicated, all functions will be assumed µ-measurable.
If f : Rn → [0,∞], we define∫ ∗

fdµ ≡ inf
simple g≥f

∫
gdµ∫

∗
fdµ ≡ sup

simple g≤f

∫
gdµ

Notice that
∫ ∗
fdµ ≥

∫
∗ fdµ. If these two values are equal, then we say f is inte-

grable with respect to µ and we define the integral of a non-negative function
f to be that common value. Finally, if f : Rn → [−∞,∞], we say that f is inte-
grable if both it’s positive and negative parts – f+ and f− – are integrable and one
of the values is not infinite. That is, we define:

Definition 2.2 (integral of an arbitrary function). Define f+ = max{f, 0}
and f− = max{−f, 0}. If f+ and f− are integrable and one of the values is not
infinite, then ∫

f dµ =

∫
f+dµ−

∫
f− dµ

Theorem 2.5. Any µ-measurable, non-negative function is integrable.

Exercise 2.21. Prove Theorem 2.5. Hint: define the Ei ≡ f−1([αi, αi+1) where
α > 1. Define F ≡ Rn \

⋃
i∈ZEi. Consider simple functions based on the partition

of Rn F ∪
⋃
iEi.

Remark 2.5. Note that many other authors use the term integrable to mean what
we mean by integrable and that |

∫
fdµ| <∞.

Definition 2.3. We will say that f is µ-summable if f is integrable and |
∫
fdµ| <

∞.

Remark 2.6. We notice immediately that sets of measure zero have no impact on
the value of the integral: we may redefine the function on a set of measure zero and
the integral remains unchanged. Notice also that a countable number of measure
zero sets has a union that also has measure zero. This is a handy fact to keep in
mind.

Remark 2.7. Notice that the hint in exercise 2.21 implies that in fact, we can
focus on paritions of the domain that are pullbacks of partitions of the range R into
intervals: Ei = f−1(Ii).

Any intuitive idea you already have of integration will work if you allow for the
fact that the measure we are integrating against may measure the sets in the domain
quite differently than the usual Lebesgue measure, though we will usuaully be using
either Lebesgue or Hausdorff measures and these do what you think they should
(possibly after studying a few examples). What takes longer to grasp are the exotic
sets that one can define. In fact, from one point of view, that is the whole point of
a large part of geometric measure theory.
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2.3.5 Properties of Integrals and Measurable Functions

Exercise 2.22. (Linearity) Show that if the integral of one of f or g is finite, the
Lebesgue integral is linear:∫

(αf + βg) dµ = α

∫
f dµ+ β

∫
g dµ

Exercise 2.23. You might like to try to prove the following theorem that appears
on page 5 of Evans and Gariepy: at least think about it before you look up the proof.
Let µ be a Borel regular measure on Rn. Define µ A(E) ≡ µ(E ∩A). Suppose that
A ⊂ Rn is µ-measurable and µ(A) <∞. Then µ A is a Radon measure.

Exercise 2.24. Suppose that f : X → Y and suppose that (f−1(A)|A ∈ A) is
measurable in X. Prove that (f−1(B)|A ∈ B) is also measurable where B is the
σ-algebra in Y generated by A.

Exercise 2.25. (Properties of Measurable Functions I) Use the results of ex-
ercise 2.24 to show that if f : Rn → R, then showing that all sets in {f−1((−∞, a)) | a ∈
R} are measurable is enough to show that f is measurable. Do the same for the col-
lection of sets {f−1((−∞, a]) | a ∈ R}.

Exercise 2.26. (Properties of Measurable Functions II) Suppose f : Rn →
R, g : Rn → R, and {fk : Rn → [−∞,∞]}∞i=1 are all µ-measurable. Prove:

1. f + g, fg, |f |, min(f, g) and max(f, g) are all measurable. f/g is also µ-
measurable provided g 6= 0 on Rn.

2. infk fk, supk fk, lim infk→∞ fk and lim supk→∞ fk are all µ-measurable.

Hint: see Evans and Gariepy, Theorem 6 in section 1.1 (page 11).

2.4 Modes of Convergence and Three Theorems

If {fi}∞i=1 is a sequence of functions from our measure space to R, fi : X → R,
we would like to know how the integral behaves in relation to convergence of the
sequence. That is when is it true that:

lim
i→∞

(∫
fi dx

)
=

∫ (
lim
i→∞

fi

)
dx? (14)

This is actually a motivating question that leads us to try to understand the
differences between the different modes of convergence or closeness that can be
defined. We begin by exploring some examples a bit.
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2.4.1 Examples

Reminder – Uniform Convergence: we say that fi converges uniformly to f if

sup
x∈X
|fi(x)− f(x)| →

i→∞
0.

When the measure and convergence of fi to f are

Finite and Uniform: i.e. µ(X) <∞, and supx∈X |fi(x)−f(x)| →
i→∞

0, the answer

to the question in Equation 14 is yes!

Non-finite Measure, Uniform Convergence: The same question is answered
no, and

Finite Measure, Non-uniform Convergence: no in this case too.

Exercise 2.27. Show that finite measure and uniform convergence implies we can
switch limits with integration, in other words that the answer to the question in
Equation 14 is yes.

Exercise 2.28. Give an example of a sequence of functions fi approaching f uni-
formly, on a measure space X for which µ(X) is infinite, where the answer to 14 is
no. Hint: look at constant functions on the real line.

Exercise 2.29. Give and example of a uniformly convergent sequence fi on an
infinite measure space X, such that

lim
i→∞

(∫
fi dx

)
= 2

and ∫ (
lim
i→∞

fi

)
dx = 0

Exercise 2.30. Give an example of a non-uniformly convergent sequence fi on a
finite measure space X where again the answer to 14 is no. Hint: on the unit
interval, with the usual Lebesgue measure, try to construct a sequence fi → f ≡ 0
such that

∫
fi dx = 1 for all i.
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2.4.2 Types or Modes of Convergence

The above examples look at the question of the connection between pointwise con-
vergence and congergence in norm. But convergence in norm (i.e.

∫
|fi−f | dx→ 0)

is not the only alternative to pointwise convergence. Here are the five modes of
convergence that are important to know about.

Uniform Convergence We say that fi converges uniformly to f if

sup
x∈X
|fi(x)− f(x)| →

i→∞
0.

Convergence AE If fi → f as i → ∞ for all but a measure 0 set of points, we
say that fi is converes to f almost everywhere (a.e.). This is somtimes
refered to as poitwise convergence.

Convergence in measure If, for any ε > 0 we have that

lim
i→∞

µ({x||fi(x)− f(x)| ≥ ε}) = 0

then we sat that fi converges to f in measure.

Convergence in norm If limi→∞ ||fi − f || = 0, where || · || is a norm on the
function space containing The seqeunce fi and limit f , then we sat that the
fi converge in norm to f . This is also refered to as strong Convergence.

Weak Convergence To define weak convergence, we need the notion of a family
of test functions. Typically, test functions are functions that are nice or
even very nice, like positive C∞ functions with compact support. We will
denote the family of functions by Φ and an individual test function my φ.)

We will say that fi converges weakly to f if

lim
i→∞

∫
φfi dx =

∫
φf dx

for all test functions φ ∈ Φ.

Exercise 2.31. Find an example of a sequence of functions fi that converges to
f ≡ 0 in norm even though fi(x) does not converge to 0(= f(x)) for any x ∈ X

Exercise 2.32. Find an example of a sequence of functions fi that converges point-
wise to f ≡ 0 (everywhere, not just a.e.), even though ||fi(x)− f(x)|| = ||fi(x)|| =∫
|fi| dx does not converge to 0. (I.e. fi does not converge in norm to f

Exercise 2.33. Find an example to show that convergence in measure does not
imply convergence in norm. Hint: the fi need not be bounded.
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Exercise 2.34. Suppose we choose the norm given by ||g|| =
∫
|g| dx. Show that

if the fi and f are uniformly bounded (i.e. −C ≤ fi, f ≤ C for some C > 0), then
convergence in measure implies convergence in norm and convergence a.e.

Exercise 2.35. Find an example of a sequence of functions fi which converge to 0
nowhere, but which do converge weakly to f ≡ 0.

Exercise 2.36. Look at all the posibilities! Suppose we identify each of the 5
bit binary numbers with a set of convergence types: fi →01101 (f ≡ 0) would be
shorthand for the fact that fi converges to the zero function a.e., in measure and
weakly but not uniformly or in norm. Is it possible to find sequences converging to
zero for each of the binary numbers? If not which ones are possible?

2.4.3 The Three Theorems

The next three theorems and the examples that follow tell us that we have to be a
bit careful, but that in many useful cases, things go well – we can switch the order
of integration and limit taking! First though, we need to introduce the notion of
lim inf f and lim sup f .

Definition of limsup and liminf Suppose that f : N → R. Then the behavior
of f as its argument approaches infinity can be complicated. In particular, it might
not approach a limit. If we think visually about the sets Fn ≡ {f(i)|i ≥ n}, we
could imagine the smallest closed inteval containing Fn – call it In – and ask how
In varies as n→∞. Then lim inf f and lim sup f are the left and right endpoints of
the smallest interval in the range that “eventually” contains f. This is made precise
in the following exercise.

Exercise 2.37.

1. Show that Ii ⊃ Ii+1 for all i

2. Choose li and ri such that Ii = [li, ri]. Show that l∗ ≡ limi→∞ li and r∗ ≡
limi→∞ ri both exist and that l∗ ≤ r∗.

3. Suppose that l∗ = r∗. Show that limi→∞ f(i) exists and is equal to l∗ = r∗.

4. Suppose that l∗ < r∗. Show that if l∗ < α < r∗, then for every n there exists
i > n such that f(i) > α and a j > n such that f(j) < α.

We call the l∗ the lim inf and r∗ the lim sup. By working through the excercise, it
becomes clear that the lim infi→∞ f and lim supi→∞ f define the eventual envelope
which contains f’s oscillations “at infinity”.
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We now define lim inf f and lim sup f more concisely:

Definition 2.4 (lim supi→∞ f(i) and lim infi→∞ f(i)). Suppose that f : N→ R.

lim sup
i→∞

f ≡ lim
n→∞

(
sup
i>n

f(i)

)

lim inf
i→∞

f ≡ lim
n→∞

(
inf
i>n

f(i)

)
Exercise 2.38. Rework Exercise 2.37 for functions f : R → R, to get the analog
notions, lim infx→∞ f and lim supx→∞ f .

Definition 2.5 (lim supi→∞ fi(x) and lim infi→∞ fi(x)). Suppose that fi : X → R
for some measure space X. For a sequence of functions fi(x) we define

lim inf
i→∞

fi

to be the pointwise limit,
l(x) = lim inf

i→∞
fi(x),

and we define
lim sup
i→∞

fi

to be the pointwise limit,
u(x) = lim sup

i→∞
fi(x).

Now we can state the three theorems:

Theorem 2.6 (Fatou’s Lemma).∫
lim inf
i→∞

fi dx ≤ lim inf
i→∞

∫
fi dx

Theorem 2.7 (Monotone Convergence). Suppose that {fi} are all measureable and
that 0 ≤ f1 ≤ ... ≤ fi ≤ fi+1 ≤ .... Then we have that

lim
i→∞

∫
fi dx =

∫
lim
i→∞

fi dx.

Theorem 2.8 (Dominated Convergence Theorem). If fi → f µ a.e., |fi|, |f | < g
and

∫
g dx <∞, then ∫

|fi − f | dx→ 0 as i→∞.
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2.4.4 Proofs and Discussion of the Three Theorems

Traditionally, the monotone convergence theorem is shown and then used to prove
Fatou’s lemma, which is used to prove the dominated convergence theorem. One
can also prove Fatou and use that to prove both the monotone convergence and
dominated convergence theorems (See Evans and Gariepy’s first chapter). We will
prove the three theorems by first proving the dominated convergence theorem and
then use that theorem to prove the monotone convergence theorem, which in turn
will be used to prove Fatou’s lemma.

Proof of the Dominated Convergence Theorem.

(i) First we define a new measure µg(E) ≡
∫
E g dx whenever E is µ-measurable. For

non-measurable F, we define µg(F ) = inf{E|F⊂E}
∫
E g dx where the E are of

course measurable. Since g is µ-summable, we have that µg(X) <∞. One can
show that every µ-measurable set E is also µg-measurable (See exercise 2.39).

(ii) Choose an ε > 0. define En = {x||f(x)− f(xi)| < ε2g ∀ i ≥ n}. We have that
the Ei is µ and therefore µg measureable for all i. We also have that ...Ei−1 ⊂
Ei ⊂ Ei+1 for all i ≥ 2. Since µg(X) <∞, we have that limi→∞ µg(X \Ei) =
0.

(iii) Choose n big enough that µg(X \ Ei) ≤ ε and conclude that∫
|f − fi| dx =

∫
X\En

|f − fi| dx+

∫
En

|f − fi| dx

≤ 2

∫
X\En

g dx+

∫
En

ε2g dx

≤ 2µg(X \ En) + ε

∫
2g dx

≤ 2ε+ ε2

∫
g dx

≤ 2ε(1 +

∫
g dx)

Because ε is arbitrary, we have that
∫
|f − fi| dx→ 0 as i→∞.

Exercise 2.39. Weighted Measures: µg from µ

(a) If µ is an outer measure, with measurability determined using Carathrodory’s
criterion, g ≥ 0 and

∫
g dµ <∞, then we can define

µg(F ) ≡ inf
(E µ-measurable , F⊂E)

∫
E
g dµ.
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Prove that µg is an outer measure and that µ-measurability implies
µg-measurability.

(b) Give an example illustratiing why µg-measurability does not imply µ-measurability.

(note) The notation µ g is also used to denote µg.

Proof of Monotone Convergence Theorem.

(i) If
∫
g dx <∞, use the dominated convergence theorem to get the result.

(ii) If
∫
g dx = ∞, then we can find a simple function gC such that gC ≤ g

everywhere and
∫
gC dx > C.

(iii) Define En = {x|gi > (1 − ε)gC ∀ i ≥ n}. Choose n big enough that µgC (X \
En) ≤ ε.

(iv) Note that we have ∫
gi dx ≥

∫
En

gi dx

≥
∫
En

(1− ε)gC dx

≥ (1− ε)(C − ε)

Since ε is arbitrary and C is a big as we like, we have that
∫
gi dx→

∫
g dx.

Proof of Fatou’s Lemma.

(i) Define hn(x) = infi≥n fi(x). Note that lim infi→∞ fi = limi→∞ hi.

(ii) Note that
∫
hn dx ≤

∫
fi dx for all i ≥ n. We conclude that

∫
hn dx ≤

lim infi→∞
∫
fi dx for all n.

(iii) This implies that

lim inf
i→∞

∫
fi dx ≥ lim

n→∞

∫
hn dx

=

∫
lim
n→∞

hn dx (by the monotone convergence theorem)

=

∫
lim inf
n→∞

fn dx
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Remark 2.8. Using the fact that these three theorems can be proven in the reverse
order so that Fatou implies monotone implies dominated, we see that they are in
fact equivalent. In the usual path to the proofs of these theorems, we do not need
the fact that

Remark 2.9. The dominated convergence theorem is really a finite measure “up-
stairs” thing. Let me explain. First, one can work in the domain of f (the measure
space) or the product space of the measure space and the range (the real line), also
known as the graph space. By working upstairs, I mean working in the graph space,
in the region above (or upstairs) the domain. If we do that, we see that the region of
the graph space between −g and g is finite in measure and the dominated convergence
theorem is really saying that if all your messing around is done in a constrained,
finite measure set, essentially no misbehavior can result.

Remark 2.10. Dominated Convergence is used to get other switching theorems:
switching order of differentiation and summation or differentiation and integration
or integraion and summation.

2.5 Area, Co-Area, and Sard’s Theorem

2.5.1 Lipschitz Functions

Definition 2.6 (Lipschitz Mappings ). F : X → Y is Lipschitz if there is a
positive number K ≥ 0 such that |F (x)− F (y)| ≤ K|x− y| for all x, y ∈ X.

Radamacher’s theorem tells us that a Lipschitz function is differentiable almost
everywhere!

Theorem 2.9 (Radamacher’s Theorem). If F : Rn → Rm is Lipschitz, then the
set of points at which it fails to be differentiable has measure zero. I.e. F Lipschitz
⇒ F is differentiable almost everywhere.

It turns out that Lipschitz functions are nice enough for many purposes. While
differentiability everywhere generally makes proofs easier, often having only Lips-
chitz smoothness does not stand in the way of various useful (smooth) theorems
being true for them as well.

2.5.2 Area and Coarea formulas

The behavior of integrals and volumes under mappings is the focus of the next two
highly useful results.

First we consider Lipschitz maps F : Rn → Rm when n ≤ m. Define |JF | =√
det(DF T ◦DF ), where the T superscript indicates transpose.

In this case we have:
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Theorem 2.10 (Area Formula).∫
Ω
|JF |dHn =

∫
F (Ω)
H0(F−1(y) ∩ Ω)dHny

When a Lipschitz F : Rn → Rm when n ≥ m. Define |JF | =
√

det(DF ◦DF t).
Now we have:

Theorem 2.11 (Coarea Formula).∫
Ω
|JF |dHn =

∫
F (Ω)
Hn−m(F−1(y) ∩ Ω)dHmy

We can add functions to get more general results:

Theorem 2.12 (Area Formula, version 2).∫
Ω
g(x)|JF |dHnx =

∫
F (Ω)

(∫
F−1(y)∩Ω

g(x)dH0x

)
dHny

and:

Theorem 2.13 (Coarea Formula, version 2).∫
Ω
g(x)|JF |dHn =

∫
F (Ω)

(∫
F−1(y)∩Ω

g(x)dHn−mx

)
dHmy

While it is not hard to combine both version 2’s to get a general area-coarea
formula, there is not much advantage to that.

Remark 2.11. Integrating over F (Ω) in each of the RHS’s of the above formulas
is redundant since we are always taking the intersection F−1(y) ∩ Ω.

At first these two results seem rather abstract, but in fact, you have already used
them before since they generalize the change of variables formula you have seen for
integrals in calculus. To really understand these two formulas, we need to look at
simple examples.

Example 2.1 (Integrating over spheres and then radii). Suppose that we
want to integrate a function over Rn by first integrating it over a sphere centered on
the origin and then integrating those results over the various radii. Then we can use
version 2 of the Coarea Formula and F = ||x|| together with the facts that ∇F = x

||x||
and |JF | = x

||x|| ·
x
||x|| = 1 for all x 6= 0 to get

∫
Ω
g(x)dHn =

∫ ∞
0

(∫
∂B(0,r)∩Ω

g(x)dHn−1x

)
dH1r
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Example 2.2 (A Nonlinear Fubini’s Theorem). The example above of inte-
grating over spheres and then over radii is a special case of integration over distance
functions. If we let h(x) = d(x,K) where d(x,K) is the distance from x to the
set K, we have that the gradient of d is is a unit vector everywhere except on the
interior of K so the Jacobian |Jd| = 1 almost everywhere. Our result is then:∫

Ω
g(x)dHn =

∫ ∞
0

(∫
{x|d(x,K)=r}∩Ω

g(x)dHn−1x

)
dH1r

Example 2.3 (Area of graphs). If we want to know the n-area (or n-volume)
of a graph of F : Rn → R1 over Ω ∈ Rn, then we are asking for the n-volume of
the set {(x, F (x))|x ∈ Ω} ⊂ Rn+1. We define the mapping F̂ : Rn → Rn+1 by
F̂ (x) = (x, F (x)). We get that

DF̂ =

[
In
∇F

]
,

Where ∇F is the row vector of partial derivatives of F . We could compute

√
det(DF̂ t ◦DF̂ )

or we can use the fact that this is simply the n-volume of the n columns and use the
generalized Pythagorean theorem to compute this from DF̂ . That theorem says that
the square of the n volume of this matrix is equal to the sum of the squared determi-
nates of the n+1, n×n submatrices. When we compute this we get

√
1 +∇F · ∇F .

Another way to get this is to change coordinates so that the the gradient only has
an xn component. Then

DF̂ t ◦DF̂ =

[
In−1 v1

vt1 1 +∇F · ∇F

]
.

where v1 is a column of n − 1, 0’s, and we get the same result. Finally, looking at
this purely geometrically, we can also get this result by noticing that the area of a
little piece of the graph is increased by exactly the ratio between the hypotenuse of a
triangle with horizontal 1, vertical side ||∇F || and the horizontal side length.

Remark 2.12 (In Class Pictures!). I will give an intuitive explanation of both
the area and coarea formulas in class. Eventually the pictures and explanations will
appear in the notes as well.

2.5.3 Sard’s Theorem

It is clear that the measure of points in the domain where the rank of a mapping is
not full can be large. In fact, simply using the 0 mapping gets you a mapping whose
rank is never full on the entire domain. This raises the point, what is the measure
of the points in the range that come from points in the domain where the rank is
not full?

The answer now is not very much: to be more precise, only a set of measure
zero.
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Theorem 2.14 (Sard’s Theorem). Suppose that F : Rn → Rm and that F is Ck

with k ≥ n−m+1. Define C to be the set of points x ∈ Rn such that rank(DFx) < m.
Then Hm(F (C)) = 0.

This theorem is a technical tool extensively used in analysis and geometric anal-
ysis. It justifies the intuition that when the rank of the derivative is less than n, so
that the derivative is not onto, then the mapping squeezes space down, collapsing
at least one dimension, yielding a measure zero set.

Most of the typical proof of this result is not very enlightening, with the exception
of the last part in which you show that the measure of the image of Ck, the points
where all partial derivatives of order k and below, is zero. The argument uses
Taylor’s theorem to show that the image of a cover of Ck must be reduced in volume
to a volume that behaves like δk+1− n

m where δ is the edge length of a cubical grid
that is going to zero as we choose finer and finer discretizations. The first part of the
proof is an inductive argument. See chapter 3 of Milnor’s little book on differential
topology for all the details [1].

3 Pause: A return to the Three Integrals in

Section (1.5)

4 Other Topics

4.1 Fixed point theorems: Banach Fixed Point Theo-
rem

Many problems can be written as:

Problem 4.1 (Finding Fixed Points). Given a mapping F from a space X to
itself, F : X → X, find x∗ such that F (x∗) = x∗.

We will look at one theorem that gives the existence of unique fixed points. First
we have to introduce the idea of a Banach space.

Definition 4.1 (Vector Space Norm). Suppose that α ∈ R and x, y ∈ X, X a
vector space. Then a function from || · || : X → [0,∞) is a norm if is satisfies:

1. ||x|| > 0 when x 6= 0

2. ||αx|| = |α|||x||

3. ||x+ y|| ≤ ||x||+ ||y|| (the triangle inequality)

74



Definition 4.2 (Cauchy Sequence). Recall that xi ∈ X is Cauchy if for any
ε > 0 there is an N(ε) such that i, j > N(ε) implies that ||xi − xj || < ε.

Definition 4.3 (Complete Space). If every Cauchy sequence in X has a limit
in x, the X is complete. I.e. if {xi}∞i=1 is Cauchy, then there must also be a point
x∗ ∈ X such that ||xi − x∗|| → 0 as i→∞.

Definition 4.4 (Banach Space). A complete, normed vector space B is called a
Banach Space.

Definition 4.5 (Contraction Mapping). A function from a normed space X to
itself is a contraction mapping if ||F (x)−F (y)|| < k||x−y|| for some 0 ≤ k < 1.

Note that a contraction mapping is a special case of a Lipschitz mapping.

Theorem 4.1 (Banach Fixed Point Theorem ). Suppose that F : B → B is
a contraction mapping from the Banach space B to itself. Then there is a unique
point x∗ such that F (x∗) = x∗.

Proof.
First note that if here are two distinct fixed points x∗ and y∗ then ||x∗ − y∗|| =
||F (x∗)−F (y∗)|| < k||x∗− y∗|| with k < 1 which is a contradiction. so there cannot
be more than one fixed point. To prove that there is a fixed point

1. choose any x0 ∈ B and define x1 = F (x0), x2 = F (x1) = F (F (x0)) = F 2(x0)
and likewise xn = Fn(x0).

2. We note that xi is a Cauchy sequence:

(a) ||F i+1(x0)− F i(x0)|| ≤ ki||F (x0)− x0||
(b) for n > m

||xn − xm|| = ||Fn(x0)− Fm(x0)||

≤

(
n−1∑
i=m

ki

)
||F (x0)− x0||

= km(

n−m−1∑
i=0

ki)||F (x0)− x0||

≤ km(

∞∑
i=0

ki)||F (x0)− x0||

=
km

1− k
||F (x0)− x0||.

So, as long as n,m > N we have that

||Fn(x0)− Fm(x0)|| ≤ kN

1− k
||F (x0)− x0|| →

N→∞
0
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(c) Thus, {xi}∞i=1 is a Cauchy sequence.

3. Therefore, there is a point x∗ in B such that xi → x∗ as i→∞.

4. Since F is continuous, we have that limi→∞ F (xi) = F (limi→∞ xi) = F (x∗).
But F (xi) = xi+1 so limi→∞ F (xi) = limi→∞ xi+1 = x∗. Thus F (x∗) = x∗.

4.2 Transversality is Generic

Intersections of submanifolds of various dimensions are encountered all the time;
one can, for instance, look at Ax = b where A is an m×n matrix, as a statement of
a problem of finding a point (or all points) in the intersection of m, n-1-dimensional
subspaces of Rn. We are also often interested in how stable our problem is to
perturbations. What can we say about some problem if we add a bit of noise, or
jiggle some parameters a tiny bit?

For these questions, the key concept is the idea of transverse intersection of
subspaces.

Definition 4.6 (Transverse Intersection of Subspaces). Two subspaces of Rn,
Uk and Wm of dimension k and m respectively, are said to intersect transversely if
the span(Uk,Wm) = Rn.

This leads directly to the idea of transverse intersections of submanifolds:

Definition 4.7 (Transverse Intersection of Submanifolds). Two submanifolds
of Rn, M and N , intersecting at x are said to intersect transversely at x if the
tangent spaces TxM and TxN intersect transversely as subspaces of Rn, I.e. if
span(TxM,TxN) = Rn.

Example 4.1 (2 Curves in R3). In R3, an intersection between 2, 1-manifolds is
never transverse.

Example 4.2 (A 1-Curve and a 2-Surface in R3). In R3, an intersection
between a 2-dimensional surface and a 1-dimensional curve is transverse if and only
if the curve is not tangent to the surface at the point of intersection.

Example 4.3 (2 arbitrary submanifolds). If Mk and Np are k and p dimensional
submanifolds of H = Rn, then they intersect transversely if in a neighborhood of the
intersection point x ∈Mk∩Np, we have that dim(Mk∩Np) = dim(Mk)+dim(Np)−
dim(H) = p+ k − n.

Transverse intersections are stable: if we take an arbitrary intersection between
arbitrary compact submanifolds, then if it is not transverse it can be made transverse
using an arbitrarily small perturbation. If on the other hand the intersection is
transverse, then any perturbation of small enough magnitude will not change that
fact.
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5 Problems for the Course

5.1 Geometry of Differentiation

Problem 5.1. Suppose that f : R→ R and that f is differentiable at x = a.

1. Show that, given an angle θ, we can choose δ(θ) > 0 small enough so that for
all x such that |x− a| < δ(θ) we have that the graph of f(x) lies inside of the
cone with angle θ around the tangent line. (See Figure 9.)

2. Can you find explicit formulas for δ(θ) for the function f(x) = c1x
2 + c2x+ c3

for any arbitrary a?
Hints: (a) first solve for g(h) = f(a + h) − f(a) − La(h) where, of course
La(h) = f ′(a)h

f (a) + La(h)

y

x = a + h
a

f (a)

y = f (a) + La(h) + εh

y = f (a) + La(h)− εh

2θ2δ(θ)

y = f (x) = f (a) + La(h) + g(h)

Figure 9: (For Problem 5.1) Here is a picture to stimulate your thoughts
and explorations. La(h) is a linear function from R to R – a line through the
origin.

(b) Prove that a triangle that is obtained by a base of length h and a constant
(horizontal, in the figure) height of L has maximal apex angle when the base is
bisected (alternatively, the apical angle is bisected) by the x-axis. (See Figure 10.)
(One way to do that is show that the maximal area underneath the curve y =
d(arctan(x))

dx = 1
1+x2

, over an interval of length h is obtained when that interval is
centered on the origin.)
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θ1

θ2h

h

L

Figure 10: (For Problem 5.1) A triangle whose height (sideways height in
this picture) is L and base is a constant h has a maximal angle as the apex
(the point furthest to the left) when that apex is bisected by the x-axis. I.e.
You are trying to show that θ2 > θ1.

5.2 Higher Order Derivative Implications

Definition 5.1 (Defintion of Lipschitz – Reminder). If f : E ⊂ X → Y and

|f(x2)− f(x1)| ≤ C |x1 − x2|

for all x1, x2 ∈ E and some 0 ≤ C < ∞ then we say f is Lipschitz continuous or
simply Lipschitz, with Lipschitz constant C.

Problem 5.2. (Harder): Suppose that, f ′′(a), the second derivative of f : R→ R
at x = a, exists. Show that there is some interval around a, [a− δ, a+ δ] on which f
is Lipschitz. Hints: first show that in some interval (a− 2δ, a+ 2δ), the derivative
exists and is bounded. Then, for every point in that interval, deduce that there is
a narrow cone that works for a possibly tiny interval around it. Get a finite open
cover of [a− δ, a+ δ] using those small intervals and deduce the desired conclusion.

5.3 Lebesgue Measure

Problem 5.3. (Lebesgue Measure of Rectangles = Their Content)

1. Show that Ld(S) = 0 for any S = x ∈ Rd such that xi = c – the d-1-
dimensional plane obtained by holding the i-th coordinate constant.

2. Show that if µ(D) = 0, then µ(C ∪D) = µ(C)
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3. Show that the measure of any rectangle when some or all of the intervals
defining it are not open is the same as the corresponding open rectangle.

4. Show that for any rectangle R ⊂ Rd,

Ld(R) = c(R).

Hint: take the closed rectangle R̄ corresponding to R and notice that any
cover with open rectangles has a finite subcover also covering R̄. This is not
a trivial exercise, so beware of trivial arguments.

5.4 Hausdorff Measure

Problem 5.4. suppose that S = [a, b] × {0} is a closed line segment in R2. Show
that H1(S) = b− a. Hint: See Exercises 2.14, 2.15 and 2.17.

5.5 Integration and Differentiation

Problem 5.5. Read Section 5.12 of Fleming’s book and do problem 4 in the same
section which asks you to prove Leibniz’s rule for differentiation of definite integrals.
This will give you some experience with when it is OK to switch the the order in
which you do differentiation and integration.

6 Warm up Problems

In this section, I will create a growing list of relatively simple problems you can use
to get yourself moving, to build momentum you can bring to the harder problems
and exercises in the course. Some may require calculation and messing around – if
algebraic manipulations are not easy for you, this will help you get better at those
too!

Exercise 6.1. Show that if we approximate
√

1 + δ ≈ 1 + δ
2 , then the magnitude

of the error in squares does not exceed δ2

4 , I.e. that:∣∣∣∣∣(√1 + δ
)2
−
(

1 +
δ

2

)2
∣∣∣∣∣ ≤ δ2

4
.

Exercise 6.2. We deal with δ > 0:
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1. Show that for 0 ≤ δ ≤ 2, we actually have:

1 +
δ

2
− δ2

8
≤
√

1 + δ ≤ 1 +
δ

2
.

2. Show that this implies that
∣∣√1 + δ −

(
1 + δ

2

)∣∣ = {the error in assuming√
1 + δ ≈ 1 + δ

2}, is at most δ2

8 (as long as 0 ≤ δ ≤ 2).

Note: this implies approximation is very good as long as 0 ≤ δ << 1.

Exercise 6.3. Now we want to deal with δ < 0.

1. Use the mean value theorem to prove that:

√
1 + δ − 1 =

1

2
√

1 + c
δ

for some c ∈ (δ, 0). Rearranged this says:

1 +
1

2
√

1 + c
δ =
√

1 + δ.

2. Now prove that because δ < 0 we have that

1 +
1√

1 + δ

δ

2
≤
√

1 + δ.

3. Show that, in fact:

1 +
1

1 + δ

δ

2
≤ 1 +

1√
1 + δ

δ

2
≤
√

1 + δ ≤ 1 +
δ

2

4. Now use this last inequality to show that:∣∣∣∣√1 + δ −
(

1 +
δ

2

)∣∣∣∣ ≤ 1

2

δ2

1 + δ

5. Conclude that as long as −1
2 ≤ δ ≤ 0, we have∣∣∣∣√1 + δ −

(
1 +

δ

2

)∣∣∣∣ ≤ δ2
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Exercise 6.4. Collect the results from the Exercises (6.1 - 6.3) to conclude that:

If |δ| ≤ 1

2

then the error in assuming
√

1 + δ ≈ 1 + δ
2 is at most δ2:∣∣∣∣√1 + δ −

(
1 +

δ

2

)∣∣∣∣ ≤ δ2

Remark 6.1. Question: why is this approximation valuable? Answer: because,
very often, 1 + δ

2 is (algebraically) much easier to work with than
√

1 + δ.

Exercise 6.5. One final exercise on the approximation of
√

1 + δ: Use the Taylor
series for

√
1 + δ with a second derivative error term to conclude that for δ ∈ (−1

2 ,
1
2):∣∣∣∣√1 + δ −

(
1 +

δ

2

)∣∣∣∣ ≤ 1

4
δ2.

Exercise 6.6. Show that
1 + x ≤ ex

for all x ∈ R.

Exercise 6.7. Show that for x ∈ (∞, 0.5) we have:

1 + x ≤ ex ≤ 1 + x+ x2.

Hint: Split the argument into two pieces – one for x ∈ (∞, 0) and one for x ∈ [0, 0.5].
Now reason carefully with inequalities involving the derivatives.

Exercise 6.8. Now conclude that for |x| < 0.5 (Actually |x| < ln(2) works) we
have:

|ex − (1 + x)| < x2

1 ≤ ex

1 + x
≤ 1 +

x2

1 + x

1 ≤ enx

(1 + x)n
≤
(

1 +
x2

1 + x

)n
Remark 6.2. The fact that

1 + x ≤ ex

is often used for x = −ε, where 0 < ε� 1, to get

(1− ε)n ≤ e−nε

where 1− ε is the probability of an almost sure event.
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Exercise 6.9. Prove that for x ∈ R and |x| < 1,

∞∑
k=0

xk =
1

1− x
.

Recall the definition of the norm of an operator given in Definition (1.6).

Exercise 6.10. Suppose that A : Rn → Rn is linear and |A| < 1. Prove that there
is an operator B (It is no longer linear) such that

B = I +A+A2 +A3 +A4 + ...

and that
B = (I −A)−1

I.e. B is the inverse of the operator I −A, where I : Rn → Rn is the identity map.

Hint: show that for any x ∈ Rn, the series

Sk(x) ≡
(
I +A+A2 + ...+Ak

)
(x) = x+Ax+A2x+ ...+Akx

converges to a point in Rn. Now define

B(x) = lim
k→∞

Sk(x).

Now compute (I −A) ∗ Sk(x) and see what happens when k →∞.

Exercise 6.11. Now show that

1. for any linear operator A : Rn → Rn,

etA(x) ≡
(
I + tA+

t2

2!
A2 +

t3

3!
A3 +

t4

4!
A4 + ...+

)
(x)

converges for all x ∈ Rn.

2. Defining:

SkA(t, x) ≡
(
I + tA+

t2

2!
A2 +

t3

3!
A3 + ...+

tk

k!
Ak
)

(x)

use the fact that you know how to compute
dSkA(t,x)

dt to show that it makes
sense to say the solution to:

ẋ(t) = Ax(t)

is x(t) = etAx(0). One main point to notice is that we do not need a bound
on the norm of the operator A.
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3. (hard) There is a detail here that is non-trivial: how can we show that

d

dt

(
lim
k→∞

SkA(t, x)

)
= lim

k→∞

(
d

dt
SkA(t, x)

)
?

It turns out that this is true in this case and you can go ahead and assume
it, but see if you can make progress in figuring out what must be true to get
this switch to work.

Hint: when considering whether or not d
dt (limk→∞ fk(t, x)) = limk→∞

(
d
dtfk(t, x)

)
you care about how the rates of convergence of limk→∞ fk(x, t) depend on t.
You can also stare at

lim
h→0

1

h

(
lim
k→∞

fk(x, t+ h)− lim
k→∞

fk(x, t)

)
.

Exercise 6.12. Suppose that f(x) > 0 is continuous for all x and we define

A(d, x∗) =
∫ x∗+d
x∗ f(x)dx. Show:

1. A(d, x∗), as a function of x∗, is just the area under the curve over a the fixed
length interval [x∗, x∗ + d] that slides along the x-axis as we change x∗,

2. That:
dA(d, x)

dx
= f(x+ d)− f(x),

Exercise 6.13. Use the results of Exercise 6.12 to show that if we define:

θd−(x) ≡ arctan(x)− arctan(x− d)

θd+(x) ≡ arctan(x+ d)− arctan(x)

and remember that

arctan(x) =

∫ x

0

1

1 + s2
ds

we can conclude that
θd+(x) ≤ θd−(x)

for all x ≥ 0.

Exercise 6.14. Continue with Exercise 6.13, again using the results of Exercise 6.12
to prove that

θd+(−d/2) ≥ θd+(x) ∀x.

Exercise 6.15. (Implicit Function Theorem Exercise) Define z = f(x, y) = x2−y2.
For what values of c is the c-level set Lc = {(x, y) | f(x, y) = c} not regular? Find
the points (x∗, y∗) in each regular level set Lc such that either f(x, h(x) = c or
f(g(y), y) = c does not hold near (x∗, y∗). See Section 1.9.2.
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