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Chapter 1

Introduction

1.1 Texts and References

I recommend the following documents and texts:

1. the old test packet, available from Jessica Cross

2. Linear Algebra, 4th Edition by Stephen H. Friedberg, Arnold J. Insel, and Lawrence E.
Spence

3. Numbers and functions: steps into analysis by R.P. Burn

4. Functions of Several Variables by Wendell Fleming

5. Calculus with Analytic Geometry 1979 edition, by Earl William Swokowski or any book with
traditional vector calculus chapters including contour integration, divergence theorem, Stokes
theorem, and 3 dimensional integration.

6. Oxford User’s Guide to Mathematics 2004, edited by E Zeidler. This is an excellent reference
book that is quite rich in information, partly because of the editor. (Same Author as the 5
volume nonlinear functional analysis series.)

7. problems that we come up with and hand out.

8. ... there are other references I comment on in Chapter 4.

1.2 Tricks of the trade

Making these (and other) tricks and approximations subconsciously available is an important task.
Think of this list as a prompt to write your own similar list.

1. f(x) = o(x) means that f(x) = xh(x) and h(x) → 0 as x → 0; f(x) = O(x) means that
f(x) = xh(x) and h(x) ≤ C <∞ for x ∈ (−a, a);

2.
√

1 + ε = 1 + ε
2 + o(ε) ≈ 1 + ε

2

3. if x ∈ (−1, 1) then 1 + x+ x2 + ... = 1
1−x ; 1 + x+ x2 + ...+ xn = 1−xn+1

1−x

5



6 CHAPTER 1. INTRODUCTION

4. Jensen’s inequality; αi ≥ 0 ∀i and
∑
αi = 1; if f is convex, then f(

∑
αixi) ≤

∑
αif(xi).

5. Cauchy-Schwarz inequality; for v, w ∈ Rn or some Hilbert space, |v · w| ≤ |v| |w|; under-
standing that this is just 0 ≤ (v − w) · (v − w) when |v| = |w| = 1.

6. Minkowski’s inequality in a Hilbert space; where |x| =
√
x · x, using the C-S inequality, we

get that
|x+ y|2 = (x+ y) · (x+ y) = x · x+ 2x · y+ y · y ≤ |x|2 + 2|x| |y|+ |y|2 = (|x|+ |y|)2 which is
Minkowski’s inequality – |x+ y| ≤ |x|+ |y|.

7. Holder’s inequality; if 1
p + 1

q = 1, then |fg|1 ≤ |f |p |g|q where |f |α = (
∫
|f |αdx)

1
α for

1 ≤ α <∞.

8. am-gm inequality; ap11 a
p2
2 a

p3
3 · · · a

pn
n ≤ p1a1 + p2a2 + p3a3 + · · · + pnan; special cases are√

ab ≤ 1
2(a+ b), and n

√
a1a2 · · · an ≤ 1

n(a1 + a2 + · · · an)

9. Triangle inequality: ||x| − |y|| ≤ |x± y| ≤ |x|+ |y|

10. integrating inequalities, remembering that you cannot differentiate inequalities; i.e. f(x) ≤
g(x) 6⇒ f ′(x) ≤ g′(x).

11. (a − b)2 > 0 with equality only when a = b ⇒ we have that ab ≤ a2+b2

2 with equality only
when a = b.

12. |(f(x)− f(a))− dfa(x− a)| ≤ o(|x− a|); understanding the cone picture that goes with this.

13. f(x) > 0, α(x) > 0 and −α(x)f(x) ≤ f ′(x) ≤ α(x)f(x) ⇒ implies that

f(a) e
∫ b
a −α(x) dx ≤ f(b) ≤ f(a) e

∫ b
a α(x) dx.

14. if f : R → R and f is differentiable everywhere, then f(b) − f(a) = f ′(c)(b − a) for some
c ∈ (a, b);

15. (continued) in higher dimensions (f : Rn → Rm and f ∈ C1) we have that if γ : [a, b] → Rn

and | ˙γ(s)| = 1 for all s, then
∫ b
a Df(γ̇(s)) ds ≤

∫ b
a |Dfγ(s)|ds ≤ (max[a,b] |Dfγ(s)|) |b− a|. So

there is a c ∈ [a, b] such that |f(γ(b)) − f(γ(a))| ≤ |Dfγ(c)| |b − a|. (Actually, there will be
a c ∈ (a, b) such that |f(γ(b))− f(γ(a))| ≤ |Dfγ(c)| |b− a|.)

16. (Continued) Notice that if x, y ∈ Rn, |b− a| = |y − x| and we choose γ(s) = x+ y−x
|y−x|(s− a)

then |y − x| = |γ(b) − γ(a)| = |b − a| so that we also have that |f(γ(b)) − f(γ(a))| ≤
|Dfγ(c)| |γ(b)− γ(a)|.

17. sin(ε) = ε+O(ε3); cos(ε) = 1− ε2 +O(ε4)

18. using Taylor series; truncating them, integrating them, etc

19. |
∫
f(x) dx| ≤

∫
|f(x)| dx

20. 1 + x ≤ ex

21. limn→∞(1 + c
n)n = ec

22. ẋ = αx→ x(t) = x(0)eαt

23. SVD as the Swiss army knife of L2 linear algebra; geometry, norms, determinants, etc.
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24. ln(x+ 1) = x− x2

2 + x3

3 −
x4

4 + ...

25. Taylor Series for sin(x), cos(x) and ex.

26. Derivatives:

(a) d
dx sin(x) = cos(x)

(b) d
dx cos(x) = − sin(x)

(c) d
dx tan(x) = 1

cos2(x)
= sec2(x)

(d) d
dx arcsin(x) = 1√

1−x2

(e) d
dx arccos(x) = −1√

1−x2

(f) d
dx arctan(x) = 1

1+x2

27. Use eiθ = cos(θ) + i sin(θ) and eiθ1eiθ2 = ei(θ1+θ2) to remember formulas for sin(θ1 + θ2),
cos(θ1 +θ2): sin(θ1 +θ2) = sin(θ1) cos(θ2)+sin(θ2) cos(θ1) and cos(θ1 +θ2) = cos(θ1) cos(θ2)−
sin(θ1) sin(θ2) ... anything else like half angle and double angle and tangent formulas follow
...

28. Quadratic formula and implications: ax2 + bx + c = 0 ⇒ x = −b±
√
b2−4ac

2a and we get that
the positivity of D = b2− 4ac gives us the number of roots, {D < 0 → none, D > 0 → 2 and
D = 0 → 1}

29. Suppose A is an n-by-n matrix. If A = AT (A is symmetric), then

(a) A is diagonalizable,

(b) The eigenvectors form a complete basis for Rn. There can be ambiguity here, but an
orthogonal basis can always be chosen, even if there are choices that are not orthogonal.

(c) The product of all the eigenvalues is the determinant of A: Πn
i=1λi = det(A)

(d) if A is also positive definite, all the eigenvalues of A are positive and the graph of the
function F (x) = xTAx is a paraboloid opening up (i.e. F :→∞ as |x| → ∞.

30. det(AB) = det(A) det(B)

31. if x ∈ Rn then all other y ∈ Rn can be written as y = αx + βwy where x · wy = 0. (The
subscript on wy reminds us that wy can of course depend on y.)

32. If A is an n-by-n matrix and the operator norm of A is less than 1: |A| < 1, then we
have that (I − A)−1 = I + A + A2 + A3 + .... For any n-by-n matrix. we have that

eA = I + A + A2

2! + A3

3! + A4

4! + · · · and etA = I + tA + t2A2

2! + t3A3

3! + t4A4

4! + · · · make
sense.

33. If O is a matrix of k orthonormal columns in Rn (so O is an n-by-k matrix), the matrix
PO ≡ OOT is the matrix which projects Rn onto the span of O. As a special case, if |x| = 1
and x is a column vector in Rn, then xxT is the rank-1, n-by-n projection matrix projecting
Rn onto the span of x, and I − xxT is the projection onto the orthogonal complement of x.
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34. When we are using test functions φ (or any other function that vanishes, together with its
derivatives, on the boundary of our region of integration Ω), then integration by parts gives
us:

∫
Ω f
′φ dx = −

∫
Ω fφ

′ dx. (We call g the weak derivative of f if, for all φ compactly
supported in the (open) region of integration Ω, we have that

∫
Ω gφ dx = −

∫
Ω fφ

′ dx. A
function is compact supported in the open set U if the closure of {x|f(x) 6= 0} is compact
and contained in U .)

1.3 Comments

1. Your aim should be to figure out how to prove, how to calculate, how to solve by under-
standing the underlying why’s. Very often early experiences with mathematics boil down to
students being handed how to’s and then practicing doing without ever understanding the
why’s. This is very, very undesirable and not very useful.



Chapter 2

Analysis

2.1 Metric spaces

Metric spaces are ubiquitous in analysis – you are already well acquainted with important examples
of them: the real line, the spaces Rn, and even spaces of functions, though you may have not thought
of collections of functions as spaces in the same way that you think of Rn as a space of points.

2.1.1 Metrics

A metric space is a set of point X and a metric ρ which defines distances between points in the
space and satisfies three simple properties:

1. ρ(x, y) ≥ 0; ρ(x, y) = 0⇔ x = y

2. ρ(x, y) = ρ(y, x)

3. ρ(x, z) ≤ ρ(x, z) + ρ(y, z)

Exercise 2.1.1. Let X = R, x, y ∈ X, and |x−y| denote the absolute value of the difference x−y.
Prove that defining ρ(x, y) = |x− y| turns the real line {ρ,X} = {| · |,R} into a metric space.

Exercise 2.1.2. Let X = Rn, x, y ∈ X, and ρ(x, y) = |x− y| ≡ |x1 − y1|+ · · ·+ |xn − yn|. Prove
that {ρ,X} is a metric space.

Exercise 2.1.3. (*) Let X = Rn, x, y ∈ X, and ρ(x, y) = |x− y| ≡
√
|x1 − y1|2 + · · ·+ |xn − yn|2.

Prove that {ρ,X} is a metric space. Hint: you need to show that |x · y| ≤ |x||y|.

Exercise 2.1.4. Let X = R and ρ(x, y) = 1 if x 6= y and ρ(x, y) = 0 when x = y. Show that
{ρ,X} is a metric space.

Exercise 2.1.5. Let {ρ,X} be a metric space and Y b X. Show that {ρ, Y } is a metric space:
i.e. the metric, restricted to the subset, is a metric on that subset.

9
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Exercise 2.1.6. Let X be a set of three points x,y, and z. Give a precise description of all the
metrics on this space of points. Hint: think of it as a subset on R3.

Exercise 2.1.7. Let |v| =
√
|v1|2 + |v2|2 for v ∈ R2. Suppose that we define ρw(x, y) ≡ infγ

∫ b
a w(γ(s))|γ′(s)| ds,

where we minimize over Lipschitz γ : R → R2, w(x) > 0 and is continuous for all x ∈ R2. Show
that {ρw,R2} is always a metric space

Exercise 2.1.8. Define X to be the space of continuous functions on the closed unit interval. We
denote this space by C([0, 1]). Define ρ(x, y) ≡ maxx∈[0,1] |x(t) − y(t)|. Show that {ρ, C([0, 1])} is
a metric space.

2.1.2 Open Balls, Closed Balls

Let ε > 0. Define B(x, ε) = {y ∈ X | ρ(x, y) < ε} and B̄(x, ε) = {y ∈ X | ρ(x, y) ≤ ε}. We call
B(x, ε) the open ball of radius ε centered at x and B̄(x, ε) the closed ball of radius ε centered at x.

Exercise 2.1.9. Let D be an open ball. Suppose that x ∈ D. Show there is a δx > 0 small enough
that B(x, δx) ⊂ D.

Exercise 2.1.10. What are the open balls in the discrete metric space described in Exercise 2.1.4?
Which δ’s imply B(x, δ) 6= B̄(x, δ)?

Exercise 2.1.11. (*) Recall the path based metric from Exercise 2.1.7 and suppose that w(x) = 1
for x2 ≥ 0 and w(x) = 2 for x2 < 0. Find the shortest path from the point (0, 1) to (2,−1). Find
the open ball of radius 1 centered at the origin (0, 0)

Exercise 2.1.12. Recall the metric space in Exercise 2.1.8. What functions are in the unit ball
around the function x(t) = 1∀t ∈ [0, 1]?

Exercise 2.1.13. Continuing Exercise 2.1.12, suppose that xk(t) ≡ tk what does B(x1, 1)∩B(x2, 1)
look like? Can you give a precise, geometric description: i.e. can you draw it?.

Exercise 2.1.14. Continuing Exercise 2.1.13, what can you say about B(x1,
1
8) ∩ B(x2,

1
8) look

like?

Exercise 2.1.15. What do the unit balls look like in the metric space introduced in Exercise 2.1.2
when n = 2 and n=3?
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2.1.3 Open sets, limit points, closed sets, closure, interior, exte-
rior, boundary

In a metric space, we will say that a set U is open if, for every x ∈ U , there is an open ball
B(x, ε) ⊂ U . We will say that x is a limit point of a set C if there is a sequence {yi}∞i=1 such
that limi→∞ ρ(x, xi) = 0. We will say that C is closed if it contains all it’s limit points. The
intersection of all closed sets containing A is called the closure of A and is denoted by cl(A). The
interior of A, denoted Ao, is the union of all open sets contained in A. The exterior of A, ext(A),
is the interior of the complement of A. I.e ext(A) = (Ac)o. (Recall that the complement of A are
all the points in X that are not in A, i.e A \A.) The boundary of A is the points that not in the
exterior or the interior of A: bdy(A) = X \ (Ao ∪ ext(A)).

Exercise 2.1.16. Prove that an arbitrary union of open sets is open. (This proves that the interior
of a set is open.)

Exercise 2.1.17. Prove that a finite intersection of open sets is open.

Exercise 2.1.18. Prove that a finite intersection of closed sets is close.

Exercise 2.1.19. Prove that an arbitrary intersection of closed sets is closed.(This proves that the
closure of a set is closed.)

Exercise 2.1.20. Prove that A is open if and only if Ac is closed.

Exercise 2.1.21. Prove that X and ∅ are both open.

Exercise 2.1.22. Prove that a set is closed if and only is its complement is open.

Exercise 2.1.23. Let lp(A) be the set of limit points of A. Prove that lp(A) ∪A = cl(A).

Exercise 2.1.24. Prove that cl(A ∩B) ⊂ cl(A) ∩ cl(B).

Exercise 2.1.25. Prove that Ao ∩Bo = (A ∩B)o.

Exercise 2.1.26. Why is the bdy(A) always closed?

Exercise 2.1.27. Draw pictures to illustrate Exercises 2.1.16-2.1.26
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2.1.4 Limits, subsequences, completeness, compactness

We say a sequence {xi}∞i=1 ⊂ X converges to x – xi → x – if limi→∞ ρ(x, xi) = 0. Let k : N→ N
be any strictly increasing function from the natural number to the natural numbers. The sequence
{xk(i) = xki}∞i=1 ⊂ X is called a subsequence of {xi}∞i=1 ⊂ X. A Cauchy sequence is any
sequence such that for all ε > 0, there is an Nε < ∞ such that if i, j > Nε, then ρ(xi, xj) ≤ ε. A
metric space is complete if every Cauchy sequence converges: that is, if for every Cauchy sequence
{xi}∞i=1 ⊂ X there is an x ∈ X such that xi → x, then we say that X is complete. We say that X
is totally bounded if for every ε > 0 there is a finite collection of ε balls {B(xi, ε)}Nεi=1 such that
X ⊂ ∪Nεi=1B(xi, ε). Such a collection of centers {xi}Nεi=1 is called an ε-net. We say that {Uα}α∈A
covers A if A ⊂ ∪αUα. A finite subcollection {Uαi}Ni=1 of a cover of A, U = {Uα}α∈A, is called a
finite subcover if A ⊂ ∪Ni Uαi . A set or space is compact if every open cover has a finite subcover.
In general, compactness allows you to reduce countably infinite collections and arguments to finite
collections and arguments.

Exercise 2.1.28. Prove that S ≡ {xi}∞i=1 converges if and only if every subsequence of S converges.

Exercise 2.1.29. Prove that if S ≡ {xi}∞i=1 converges, then every subsequence converges to the
same limit.

Exercise 2.1.30. Let X = the open unit ball in R2. Let ρ be the standard euclidean distance on
R2 (see Exercise 2.1.3 with n = 2). Show that {ρ,X} is not complete. Find a Cauchy sequence
that does not converge to an x ∈ X

Exercise 2.1.31. Prove that any metric space X can be embedded isometrically into another
metric space X̂ that is complete, such that every point in X̂ \ X is the limit of some Cauchy
sequence in X. Hint: let X̂ be the space of all Cauchy sequences of X ...

Exercise 2.1.32. Prove that a subset Y of a complete metric space X is complete as a metric
subspace of X if and only if Y is closed in X.

Exercise 2.1.33. Prove that if X is totally bounded and complete, then every infinite subset S
has a limit point; I.e. there is a sequence {xi}∞i=1 in S and a point x ∈ X such that xi → x.

Exercise 2.1.34. Assume that X is complete. Prove that if for all i ∈ N, Ci ⊂ X is closed and
the sets are nested, Ci+1 ⊂ Ci, then ∩∞i=1Ci 6= ∅.

Exercise 2.1.35. Show that X is totally bounded and complete if and only if every open cover
has a finite subcover.

Exercise 2.1.36. Show that in Rn a subset is compact if and only if it is closed and bounded.
Hint: The only thing we need that is not in the previous exercises is that R is complete. You can
take this as an axiom. Next show that Rn is complete.

Exercise 2.1.37. Suppose that A is compact. Suppose that for every x ∈ A, there is a δx and an
εx such that f(y) > δx for all x ∈ B(x, εx). Show that there is a δ > 0 such that A > δ for all
x ∈ A.
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2.1.5 Connectedness

A set A is disconnected if there are two disjoint open sets U1 and U2 such that A∩U1 6= ∅ 6= A∩U2

and A ⊂ U1 ∪ U2. A set that is not disconnected is connected. The arbitrary union of connected
sets all containing a common point is connected (exercise below) and so we can defined the the
connected component containing a point x to be the union of the connected sets containing x.

Suppose A has the property that for every pair of points a 6= b in A, we have a pair of disjoint
open sets Ua and Ub such that A ⊂ Ua ∪ Ub and a ∈ Ua and b ∈ Ub. We say that such a set A is
totally disconnected.

Exercise 2.1.38. Show that any finite subset of the real line with the usual metric | · |, is totally
disconnected.

Exercise 2.1.39. Show that rational numbers Q ⊂ R is a totally disconnected set.

Exercise 2.1.40. Show that an arbitrary union of connected sets that all have at least one point
in common is also connected.

Exercise 2.1.41. Show the intervals (0, 1) and [0, 1] are connected. Hint: Assume they are dis-
connected and use the fact that least upper bounds (supremums) exist on the real line, after you
choose two points which are each in different open sets with are disjoint yet together cover the
interval.

2.1.6 Continuity

We say that f is continuous at x ∈ X if for every ε > 0 there is a δ > 0 such that y ∈ B(x, δ)
implies that f(y) ∈ B(f(x), ε). We define the limit of f at x to be lim

x
f = f̂ if, for every ε > 0,

there is a δ > 0 such that y ∈ (B(x, δ) \ x) implies that f(y) ∈ B(f̂ , ε). In these terms, f is
continuous at x if lim

x
f = f(x). We say f is continuous if it is continuous for every x ∈ X.

Equivalently a function from one metric space to another, f : X → Y , is continuous if the inverse
image of any open set on Y is open in X. We say that f is uniformly continuous if δ is a function
only of ε and not of x.

Exercise 2.1.42. Prove that in metric spaces, the two definitions of continuity, given in the first two
sentences of this subsection above, are equivalent. (The first definition works in general topological
spaces whereas the second does not.)

Exercise 2.1.43. Suppose X and Y are metric space. Prove that if f : X → Y is continuous,
then f−1(y) ⊂ X is closed for any point y ∈ Y . More generally, prove that the inverse image of
any closed set in Y , is closed in X.

Exercise 2.1.44. Prove that continuous functions map connected sets to connected sets.

Exercise 2.1.45. Use 2.1.44 to prove the intermediate value theorem: Assume f : R → R is
continuous. Assume also that f(a) ≤ f(b). Then for every f(a) ≤ y ≤ f(b) there is at least one
x ∈ [a, b] such that f(x) = y. Comment why the case of f(a) > f(b) is completely analogous.
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Exercise 2.1.46. Prove that a continuous function on a compact set is uniformly continuous.

Exercise 2.1.47. Prove that a continuous function on a compact set attains a maximum and a
minimum.

Exercise 2.1.48. Let A ⊂ Rn and define d(x,A) = infa∈A ρ(x, a). Prove that d(x,A) is continuous
as a function from x ∈ Rn to R.

Exercise 2.1.49. If A is closed, prove that there is a point in a∗ ∈ A such that ρ(x, a∗) = d(x,A).

Exercise 2.1.50. Give examples of closed sets where there is more than one point a∗ ∈ A that
minimizes ρ(x, a) (Remember, we are fixing x and varying a). Give examples of open sets A and
point x such that there is no point a∗ ∈ A minimizing ρ(x, a).

Exercise 2.1.51. Define the mapping f : c([0, 1]) → R by f(x) =
∫ 1

0 x(t) dt. Prove that this
function is continuous on the metric space introduced in Exercise 2.1.8.

Exercise 2.1.52. Continuing exercise 2.1.51, what can you say about f−1(1)? Is this a bounded
set? Is it a closed set?

Exercise 2.1.53. Suppose that U ⊂ X is open and A ⊂ U is compact. Use distance functions to
create a continuous function from X to R such that 0 ≤ f ≤ 1 on X and f = 1 on A and f = 0 on
U c.

Exercise 2.1.54. Suppose that f : [a, b] → [a, b] is continuous. Prove that there is an x ∈ [a, b]
such that f(x) = x.

2.2 More Limits and lim inf, lim sup

We already spent some time thinking about limits in the section on metric spaces, but we will
spend more time now looking at limits in R and Rn, as well as in spaces of functions.

If we have a sequence {ai}∞i=1 it may not converge to anything. but we always have the fol-
lowing two derived sequences: Lk ≡ sup{ai|i ≥ k} and lk ≡ inf{ai|i ≥ k}. We now define the
lim sup({ai}) = limk→∞ Lk and lim inf({ai}) = limk→∞ lk.

If f : X → R and X is a metric space, we can define lim inf and lim sup in terms of epsilon balls.
We define lim sup

x
f ≡ limr→0(supy∈(B(x,r)\x) f(y)) and lim inf

x
f ≡ limr→0(infy∈(B(x,r)\x) f(y)).

Exercise 2.2.1. Prove that if ai is non-decreasing then there is an a ≤ ∞ such that limi→∞ ai = a.

Exercise 2.2.2. Prove that if ai is non-increasing then there is an a ≥ −∞ such that limi→∞ ai = a.

Exercise 2.2.3. Prove that for any sequence {ai}, lim sup({ai}) and lim inf({ai}) exist and satisfy
lim sup({ai}) ≥ lim inf({ai}). Prove also that {ai} converges to a limit if and only if lim sup({ai}) =
lim inf({ai}).

Exercise 2.2.4. Prove that for any f : X → R, we have that lim sup
x

f and lim inf
x

f exist. Prove

that lim
x
f exists if and only if lim sup

x
f = lim inf

x
f 6= ±∞, in which case lim

x
f = lim sup

x
f = lim inf

x
f

Exercise 2.2.5. Draw illustrations of the ideas behind lim inf, lim sup and lim.
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2.3 Infinite sequences and Series

An infinite sequence is an indexed sequence of numbers, {ai}∞i=1 ⊂ R though, strictly speaking,
it is a function from the natural numbers N into R. A infinite series is an infinite sum or numbers
or functions: for example,

∑∞
i=1

1
i2

or
∑∞

i=0 x
i. On the GQE there is always at least one question

about series. Asking whether or not a series converges is, more precisely, asking if the sequence
Sk ≡

∑k
i=1 ai or Sk ≡

∑k
i=1 ai(x) converges. In the second case, the answer may vary with x

and if it does converge the speed it converges may vary with x. In particular, the case of power
series where we are studying

∑∞
i=0 aix

i, takes a prominent role in the study of series, both for
historical reasons (e.g. newton used power series to solve differential equations) and the fact that
Taylor series – a special case of power series – are a very important family of local approximation
approximations to functions. We will study Taylor series later in these notes. We say a series∑

i ai is absolutely convergent if
∑

i |ai| converges and is conditionally convergent if
∑

i ai
is convergent but

∑
i |ai| is not.

Generally speaking, to answer whether something converges or not, we have to know what
metric we are measuring proximity in: ai → â if ρ(ai, â) → 0. In the next few sections, we will
often be using the euclidean norm on Rn, with this being simply the absolute value function on R.
We denote them all by |a| or |a− b| whenever a, b ∈ Rn for any n.

Exercise 2.3.1. Suppose that ai → a and bi → b where −∞ < a, b <∞. Prove that:

1. ai + bi → a+ b,

2. aibi → ab,

3. for the case that b 6= 0 we also have ai/bi → a/b, and

4. 1
n

∑n
I=1 ai → a.

Exercise 2.3.2. Suppose that:

1. aNi > 0 for all i and N

2.
∑N

i=1 a
N
i = 1 for all N

3. For any fixed M > 0, we have that limN→∞(
∑M

i=1 a
N
i ) = 0

Prove that if bi → b, then limN→∞(
∑N

i=1 a
N
i bi) = b

Exercise 2.3.3. Suppose that −∞ <
∑∞

i ai < ∞, but that
∑∞

i |ai| = ∞. Prove that by
rearranging the order of the summation, we can make this series converge to any real number!

Exercise 2.3.4. Prove that if
∑

i |ai| converges then
∑

i |ai|p also converges as long as p ≥ 1. Find
a counterexample for the claim that this is also true when 0 < p < 1.

Exercise 2.3.5. Assume that |ai| < 1 for all i. Prove that
∑

i ai converges if and only if
∑

i ln(1+ai)
converges.
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Exercise 2.3.6. Suppose that limi→∞ ai = 0. Use exercise 2.3.5 to prove that Π(1 + ai) converges
to p 6= 0 if and only if

∑
ai converges.

Exercise 2.3.7. Use what you know about the integral
∫∞

1
1
xαdx to establish the convergence

properties of
∑

i
1
iα for α > 0.

Exercise 2.3.8. Show that if
∑∞

i=0 aix
i converges for x = x∗, then this power series converges

absolutely for all x such that |x| ¡ |x∗|.

Exercise 2.3.9. The previous Exercise (2.3.8) explains the term Radius of convergence, R
which is defined to be the supremum of the r such that

∑∞
i=0 aix

i when |x| ≤ r. What is the radius
of convergence R of the series

∑∞
i=0 x

i? What can you say about convergence at x = ±R

Exercise 2.3.10. What is the radius of convergence R of the series
∑∞

i=1
(−x)i

i ? What can you
say about convergence at x = ±R

Exercise 2.3.11. The various ways of finding the radius of convergence of a power series are
explored in Burn’s book: look them up and do the corresponding exercises there.

2.4 Pointwise and Uniform Convergence

We now look at a zoo of limit problems, including those in which there are multiple versions of
convergence happening (or not happening) simultaneously. We say that fi converge pointwise
to f if, for x ∈ X we have that |fi(x) − f(x)| →

i→∞
0. The key point here is that the rates at

which this convergence happens, can vary from point to point in X. We say that fi converge
uniformly to f if sup

x∈X
|fi(x) − f(x)| →

i→∞
0. Recalling Exercise 2.1.8, we see that the metric in

that spaces was the metric of uniform convergence. The famous Weierstrass M-test is another
example of uniform convergence – see Exercise 2.4.2. (There are topologies more complicated than
metric space topologies that can be used to study pointwise convergence, but we will not study
these in this course.)

When we get to our more in depth look at integration, we will encounter additional modes of
convergence, some of which are hinted at in the exercises.

Exercise 2.4.1. Find a sequence of continuous functions which converge pointwise to another
continuous function, but the convergence is not uniform. Hint: you can chose {xi}∞i=1 ∈ C([0, 1])
all of which have values between 0 and 1, with xi(0) = xi(1) = 0 for all i.

Exercise 2.4.2. (Weierstrass M-Test) Suppose that

1. sup
x∈X
|fi(x)| ≤Mi and

2.
∑

iMi <∞.

Prove that there is an f such that fi → f uniformly.
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Exercise 2.4.3. Suppose that fi → f uniformly and that each of the fi are continuous. Prove
that f is continuous.

Exercise 2.4.4. Prove that if fi → f uniformly and [a, b] is a bounded interval, then
∫ b
a fidx →∫ b

a fdx. Find an example of fi → f that converge pointwise in [a, b] and yet
∫ b
a fidx 6→

∫ b
a fdx.

Exercise 2.4.5. We define fi : [0, 1]→ R for any i: for all odd 0 < k < 2i, define fi : [0, 1]→ R to
be −1 when k−1

2i
≤ x < k

2i
, and 1, when k

2i
≤ x < k+1

2i
k
2i

. Define fi(1) = 0 for all i. Show that fi

converge pointwise nowhere except at x = 1, yet
∫ 1

0 fi(y)h(y) dy →
∫ 1

0 0 · h(y)dy = 0 for any fixed
h which is continuous on [0, 1]. (In this case we say that fi converge weakly to f

Exercise 2.4.6. We have been thinking about f : [a, b]→ R, which are functions on spaces with a
uncountably infinite number of points. Consider instead f : N → R or even f : (1, 2, 3, ..., n) → R
– the infinite or finite sequence spaces. In the second case, we can see these functions as sim-
ply points in Rn. In the second case, we often think of these functions as infinite sequences
(a1, a2, ..., an, an+1, ...) and use the metrics ρp(a, b) = p

√∑
i |ai − bi|p with some fixed 1 ≤ p <∞ or

even ρ∞(a, b) = supi |ai − bi|. Prove that in the case of finite sequences, pointwise convergence is
equivalent to convergence in any of the usual metrics in Rn – ρp(x, y) = |x− y|p = p

√∑
i |xi − yi|p.

Exercise 2.4.7. Prove that pointwise convergence in the space of infinite sequences is not the same
as convergence in any of the ρp metrics.

Exercise 2.4.8. Let us designate the space of sequences x such that |x|p < ∞ by lp. Suppose
that fn = (fn1 , f

n
2 , f

n
3 , ...) is a sequence of infinite sequences in l1. Suppose further that |fni | ≤ bi

for all i and all n and |b|1 < ∞. Prove that in this case, pointwise convergence is equivalent to
convergence in the ρ1 metric.

2.5 Norms and Inner Products

When we are working in vector spaces, we will often be working in spaces that have extra structure
that turns the space into a metric space or even a metric space that flows from a generalized dot
product called an inner product. When these vector spaces are infinite dimensional – for example,
when the space is a space functions like all functions f : [0, 1] → R such that

∫
[0,1] |f |dx < ∞ –

life gets much more interesting, and complicated. We will look at that in a little bit of detail
later in these notes. A vector norm or simply norm is a length measure of vectors satisfying
(1) |x| ≥ 0, with |X| = 0 if and only if x = 0, (2) |αx| = |α||X| for all (real or complex) scalars,
and (3) |x + y| ≤ |x| + |y|. An inner product on a vector space is a generalized dot product.
An inner product over the real numbers is generated by any bi-linear, symmetric, positive
definite function F : V ×V → R is an inner product – recall that F(x,y) is (1) bi-linear if F (α1x1 +
α2x2, y) = α1F (x1, y)+α2F (x2, y) and F (x, α1y1 +α2y2) = α1F (x, y1)+α2F (x, y2), (2) symmetric
if F (x, y) = F (y, x) and (3) positive definite if F (x, x) > 0 whenever x 6= 0. The definition of an
inner product of the complex numbers (F : V × V → C) is a bit different: we have that F is
an inner product on a vector space of the complex numbers if it is conjugate symmetric, linear in
the first term and positive definite. Using α to indicate the complex conjugate of α, this reduces to
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(1) F (α1x1 +α2x2, y) = α1F (x1, y) +α2F (x2, y) and F (x, α1y1 +α2y2) = α1F (x, y1) +α2F (x, y2),
(2) F (x, y) = F (y, x) and (3) F (x, x) > 0 whenever x 6= 0. It is traditional to denote F (x, y)
by < x, y >. An inner product generates a norm: if 〈·, ·〉 is an inner product, then |x| ≡

√
| 〈x, x〉 |

is a norm. If the normed vector space (V, | · |), is complete as a metric space with the metric
ρ(x, y) = |x − y|, then V is a Banach Space. When the Banach space norm is generated by an
inner product, V is a Hilbert Space.

Exercise 2.5.1. Prove that if 〈·, ·〉 is an inner product, then |x| ≡
√
| 〈x, x〉 | is a norm.

Exercise 2.5.2. Prove that if E ⊂ Rn is any bounded convex set with nonempty interior, that
is symmetric about the origin, defines a norm. In a bit more detail, suppose that α is the largest
scalar such that αx ∈ E. Define F (x) = 1

α : prove that if |x| ≡ F (x) is a norm. Suggested steps.

1. Prove that E contains some epsilon ball containing the origin.

2. Prove that F (x) ≥ 0 if and only if x = 0.

3. Prove that F (αx) = |α|F (x)

4. Prove that the F is a convex function.

5. Prove that F (x+ y) ≤ F (x) + F (y).

Exercise 2.5.3. Prove that E ⊂ Rn, E ≡ x||x| ≤ 1 is a bounded convex set with non-empty
interior and is symmetric about the origin. Conclude that the procedure outlined in Exercise 2.5.2
using E gives us back the | · | used to define E.

Exercise 2.5.4. Suppose we are in a Hilbert space H with inner product 〈·, ·〉. Choose some fixed
x ∈ H. Prove that any other y ∈ H can be written as α1x+α2w where w (which can vary with y)
satisfies 〈x,w〉 = 0 and α1 and α2 are scalars.

Exercise 2.5.5. Recall that in a Hilbert space H, |x| ≡
√
〈x, x〉. Suppose x, y ∈ H, |x| = |y| = 1

and x 6= y. Prove that there are nonzero scalars α1 and α2, and a vector w, such that |w| = 1,
〈x,w〉 = 0, y = α1x+ α2w and α2

1 + α2
2 = 1.

Exercise 2.5.6. A linear subspace S of a vector space V is any subset which is closed under vector
addition and scalar multiplication. That is, if α is a scalar and x, y ∈ S, then x+y ∈ S and αx ∈ S.
Suppose that E ⊂ V and x ∈ E. We define E−x ≡ {y ∈ V |y = e−x for some e ∈ E}. Prove that
S − x = S if and only if x ∈ S

Exercise 2.5.7. An affine subspace of a vector space is a subset of the vector space such that
for any x ∈ A, then A−x is a linear subspace of V . Prove that every affine subspace is of the form
S + x where x ∈ V and S is a subspace of V .

Exercise 2.5.8. Suppose that H is n-dimensional. Prove that Hw,c ≡ {x ∈ H| 〈w, x〉 = c} is an
affine subspace of dimension n− 1.
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Exercise 2.5.9. Define the half spaces H+
w,c ≡ {x ∈ H| 〈w, x〉 ≥ c} and H−w,c ≡ {x ∈ H| 〈w, x〉 ≤

c}. We will sometimes simplify Hw,c, H
+
w,c, and H−w,c to H, H+, and H− when w and c are

understood from the context.

Exercise 2.5.10. Assume the fact that E is closed and strictly convex if and only if every
point x in the boundary of E is contained in an affine subspace H of V , intersecting E only at x
and E ⊂ H−. Prove that E = {x| |x| =

√
〈x, x〉 ≤ 1} is strictly convex. Suggestion: consider

x ∈ E such that |x| = 1 and H−x ≡ {y| 〈y, x〉 ≤ 1}

2.6 Vector Calculus

In this section we deal with integration of various quantities when the domain or range (or even
both the domain and range) are higher dimensional. This adds many interesting, intriguing aspects
to the study of calculus. What we have here will be somewhat sparse and will instead expect you
to peruse the calculus book by Swokowski (or something equivalent) fairly carefully.

2.6.1 Contour integration and Stokes Theorem

Integration of functions of various kinds along 1-dimensional paths in an n-dimensional domain is
called contour integration. One often studied version computes the integral of the dot product
of a vector field with the tangent vector of a path γ : [a, b] → Rn:

∫
γ v · γ̇(s)ds. If v = ∇f ,

where f : Rn → R, then the result will be the change in f from one endpoint of γ to the next:
f(γ(b))− f(γ(a)) =

∫ b
a ∇f · γ̇(s)ds. If instead F represents the force exerted on an object moving

around γ, then
∫
γ F · γ̇(s)ds gives us the energy gained or lost by an object moving along γ.

Sometimes, one might want instead to compute
∫
γ F (γ(s))|γ(s)|ds, in order to know the total

force exerted on an object represented by the curve γ. (The units for F would be force per unit
length.)

We are also sometimes interested in knowing how much stuff flows through a curve γ
when the flow velocity is given by ~F (x). In this case, we are assuming that the domain is R2 and
we want to compute

∫
γ
~F · nγ |γ̇(s)|ds, where nγ is the norm vector to the curve pointed in the

outward direction. (For example on can consider the outward direction to be the direction pointing
to the right of the direction ahead is defined to be γ̇(s).)

Note that we will often write
∫
∂Ω v · dl, which, when we parameterize the curve ∂Ω (with

γ : [a, b] → R2 and γ(a) = γ(b)), becomes
∫
γ v · γ̇(s)ds. If the curve we are integrating over is

not a boundary, then instead of
∫
∂Ω v · dl we have

∫
Γ v · dl which, in parameterized form, is again∫

γ v · γ̇(s)ds except that now γ(a) 6= γ(b). Notice that the answer depends on the direction you
integrate. If the curve is a boundary, then you can either integrate in the direction that keeps the
inside to your left as you move ahead on the boundary (the standard choice) or the direction that
keeps the inside on your right. The answers differ by their sign. Likewise with Γ - you will get two
possible answers differing by their sign, depending on which direction you integrate.

The classical Stokes Theorem –
∫

Ω∇ × v dσ =
∫
∂Ω v · dl – often helps us compute contour

integrals. This is demonstrated in the exercises that follow. The curl of a vector field measures
the “twistyness” of the vector field and is a special case of something called an exterior derivative.
What we are calling Stokes theorem above is actually a special case of a general Stokes theorem
that relates the integral of the exterior derivative of a form on a region to the integral of the form
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over the boundary of the region. For those that know what forms are, suppose that ω is a k-form,
Ω is a k + 1-dimensional set that has sufficient regularity (smoothness), and dω is the exterior
derivative of ω. Then the general Stokes theorem says that

∫
∂Ω ω =

∫
Ω dω.

Exercise 2.6.1. Look up the definition of ∇× v, the curl of v if you do not already know it. Note
that the definition should work for the case in which is a vector field in 3 dimensional space.

Exercise 2.6.2. Let F (x) = x2
1+2x1x2+x2

2 and suppose that v(x) = ∇F . Compute
∫
γ v(x)·γ̇(s)ds

where γ is the closed contour that traces out the set |x1| + |x2| = 1. Do not use Stokes Theorem
(i.e.

∫
Ω∇× v dσ =

∫
∂Ω v · dl). Do this problem with and without the help of Stokes Theorem.

Exercise 2.6.3. Prove that ∇×∇f = 0 for f ∈ C2.

Exercise 2.6.4. Define v(x) = (x2
1 + x4

2, x1 + x1x2). Suppose that Ω = the square defined by the
points four point (0, 0), (1, 0), (0, 1), (1, 1): i.e. Ω is the convex hull of those four points. Compute∫
∂Ω v · dl integrating in the counterclockwise direction. Does Stokes Theorem help you do this

problem?

Exercise 2.6.5. Define v(x) = (−x2, x1). Compute
∫
∂Ω v · dl for the squares in the positive

quadrant with one corner at (0, 0) and (1) side length 1, (2) side length 3, and (3) side length 5.
Do this problem with and without the help of Stokes Theorem.

Exercise 2.6.6. Prove that if ∇× v = 0 in a region Ω ⊂ R2, then there is a function F such that
in Ω, v = ∇F .

Exercise 2.6.7. The classical Stokes theorem works on 2-dimensional surfaces in R3 as well. (This
is of course clear if one knows the general Stokes theorem that applies to k-dimensional sets in Rn.)
In this case though, the statement is little a bit different:

∫
Ω∇× v · nΩ dσ =

∫
∂Ω v · dl where nΩ is

the normal vector to Ω. Suppose that v is a vector field in R3, i.e. v : R3 → R3. Now suppose that
you consider the vector field w = ∇× v and its integral curves, i.e. the solution curves generated
by the vector field ∇× v. If γ is a closed curve that is everywhere transverse to the vector field w
prove that

∫
γ v · dl is invariant under the flow generated by w.

Exercise 2.6.8. Prove Stokes Theorem (
∫

Ω∇× v dσ =
∫
∂Ω v · dl) for Ω with C1 boundaries by (1)

proving it first for rectangles and right triangles and then (2) decomposing Ω (assumed to have a
C1 boundary!) into rectangles and right triangles and a very small difference region.

Exercise 2.6.9. Explain geometrically why Stokes theorem works for arbitrary shapes in R2 and
the vectorfield v = (−x2, 0). use a non-convex region with smooth boundary to illustrate this.
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2.6.2 The Divergence Theorem and other Vector Calculus Theo-
rems

Another special case of the general Stokes theorem is the divergence theorem that relates the
flux of a vector field through the boundary of a region to the integral of the divergence of the
vector field over the region. More precisely,

∫
∇ · v dx =

∫
∂Ω v · ~n dσ. In R2, you can prove that

the divergence theorem is just Stokes and vice versa. But in higher dimensions, we have to either
use the general Stokes or prove the theorem directly.

The product rule from the first course in calculus – (fg)′ = f ′g+ fg′, is not always taught as

the key to remembering integration by parts –
∫ b
a f
′gdx =

∫ b
a (fg)′dx−

∫ b
a fg

′dx, even though it
is. After you learn the divergence theorem, you have at your disposal another theorem based on the
same idea. Now we have that ∇ · hv, where h is a scalar function, v is a vector field – h : Rn → R
and vRn → Rn, can be written as ∇·hv = ∇h ·v+h∇·v and we end up (after an application of the
divergence theorem) with

∫
Ω∇h · v dx =

∫
∂Ω hv · n∂Ω dσ −

∫
Ω h∇ · v dx, where n∂Ω is the outward

normal to ∂Ω and integration with respect to σ is integration over the n-1-dimensional surface ∂Ω.

Exercise 2.6.10. How is the fundamental theorem of calculus (F (x) − F (a) =
∫ x
a
dF (y)
dy dy) just

the divergence theorem?

Exercise 2.6.11. Use the divergence theorem and the classical Stokes theorem to prove that
∇ · (∇× v) = 0. Hint: use two hemisphere to enclose any region of space where ∇ · (∇× v) 6= 0.

Exercise 2.6.12. Use the fact that f · dl is same as the dot product of f rotated clockwise by
π/2 and and the normal of the boundary of Ω to show that (1) the classical Stokes and (2) the
divergence theorem are the same theorem for 2-dimensional Ω!

Exercise 2.6.13. Prove Green’s first identity:
∫

Ω f∆g +∇f · ∇g dx =
∫
∂Ω f∇g · n∂Ω dσ.

Exercise 2.6.14. Suppose that Ω is a region in space that is being advected by a flow generated
by the vector field v and f is a scalar function that varies over space x and time t. Prove Reynolds
Transport Theorem: d

dt(
∫

Ω fdx) =
∫

Ω
∂f
∂t dx+

∫
∂Ω v · n∂Ω dσ

Exercise 2.6.15. Choose two points in R2, x and y. Let Sxy be the line segment joining them.
Now consider any other smooth curve γ beginning at x and ending at y. Consider the unit vec-
torfield that is normal to the direction of Sxy and oriented to the left of that direction (π/2 in
the counterclockwise direction). Use the divergence theorem to show that the length of γ strictly
exceeds the length of Sxy unless γ = Sxy. To make the problem simpler you can assume that γ does
not intersect Sxy except at the endpoints. This is a simple example pf the method of calibrations
– the vector field is a calibration designed to establish the minimality of Sxy.

Exercise 2.6.16. Find a family of vector fields that satisfy ∇ · v = 0 by assuming that v =
(g1(x)h1(y), g2(x)h2(y)).
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Exercise 2.6.17. Assume we are in Rn. Use the Reynolds transport theorem, the divergence
theorem and an extension of the unit normal vector field u in the neighborhood of a smooth n-
1-manifold or piece of smooth n-1-manifold M, to show that

∫
M ∇ · vdσ = d

dt

∫
M 1dσ; i.e. the

integral of the divergence of this unit vector field gives us the instantaneous rate of change of the
n-1-dimensional volume of this manifold as it is advected by the flow generated by the vectorfield
u. Hint: use a very thin neighborhood of the manifold – thin in the normal direction – and let that
envelope flow with this normal field flow and think about the change in n-volume of this envelope
and its relation to the n-1-volume of the manifold the envelope is centered on.

Exercise 2.6.18. Let Ω be the L shaped region defined by the 6 points (0, 0), (0, 2), (1, 2), (1, 1),
(2, 1), and (2, 0). Compute

∫
∂Ω v · dl for the vector field v = (−y + y2x, x+ yx2).

Exercise 2.6.19. Let Ω be the L shaped region defined by the 6 points (0, 0), (0, 2), (1, 2), (1, 1),
(2, 1), and (2, 0). Compute

∫
∂Ω v · n∂Ωdσ for the vector field v = (x+ yx2, y − y2x).

Exercise 2.6.20. Suppose that Ω is a region in R2 with smooth boundary parameterized by γ(s).
Show that the area of Ω is given by 1

2

∫
γ γ(s) × γ̇(s)ds. Suggestion: try proving it for smooth

convex regions first. Comment: this works in Rn as well, where one now works with n− 1-vectors
which are wedge products of n− 1, n-dimensional vectors and the integrand is the wedge product
of the position vector on the surface of ∂Ω and the n-1 vector tangent orienting ∂Ω.

Exercise 2.6.21. Suppose that a homogeneous substance S has a heat capacity of CS and a heat
conductivity of κ (both constants) and that you know that the flow of heat is in the direction of
−∇U (the negative of the gradient of the temperature U), with flow magnitude equal to the k|∇U |.
Show that Ut = κ

CS
∆U , where ∆U is the Laplacian of U and is given by

∑n
i=1

∂2

(∂xi)2
U . Assume

that the temperature field is smooth (U ∈ C2(R2)). Suggestion: reason with tiny regions around
some arbitrary point x in the domain. Remark: Ut = κ

CS
∆U is called the heat equation and it is

often studied assuming that κ = CS = 1.

Exercise 2.6.22. How does the heat equation from Exercise 2.6.21 change when both κ and CS
are functions of position x?

2.6.3 Volumes of solids, tricky iterated integrals

Integrals can be used to compute volumes in R3 but these integrals can be tricky to compute. To
compute the integral, we use Fubini’s theorem to turn H3(Ω = V ol(Ω) =

∫
Ω 1dx into three iterated

integrals. The art of making this computation work is often figuring out the right order for these
three integrals.

Exercise 2.6.23. Use your calculus book to do 20 − 30 3-dimensional volume integrals involving
triple integrals.
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2.6.4 Tangents and curvature

Curves in Rn – images of function from R or segments in R to Rn – are of interest for many
practical reasons. For example, when some physical process can be described by n state variable,
time evolution of the system will be a curve in Rn. For example, if we have a particle evolving
in a potential field everything about the system is encoded in the positions in x,y, and z and
velocities in the x,y, and z directions, so n = 6 in this case. If we have 3 particles interacting
with each other and a potential field, n = 18. The case of n = 2 and n = 3 are covered in vector
calculus. The tangent vector to a curve f : R→ Rn is the derivative vector ḟ(t) ∈ Rn. Writing

f(t) = (f1(t), f2(t), ..., fn(t)), the tangent vector is ḟ(t) = (df1(t)
dt , df2(t)

dt , ..., dfn(t)
dt ). If we chose the

parameterization so that we have unit speed |ḟ(t)| = 1 everywhere, we find that f̈(t) is orthogonal
to ḟ(t).

In the case of unit speed parameterization, we call the quantity κ ≡ f̈(t)| the curvature. In
R3, the unit vector in the third orthogonal direction is called the binormal, whose direction is
chosen by the right hand rule using ḟ(t) and f̈(t) as the first two directions, in that order.

Exercise 2.6.24. Suppose that γ(s) = (sin(2s), cos(3s)). Compute γ̇(s) and then compute∫ 2π
0 |γ̇(s)|ds.

Exercise 2.6.25. Suppose that γ : [0, L]→ R2 is a simple closed curve.

1. What is the difference between the two integrals
∫
γ γ̇(s) ds and

∫
γ |γ̇(s)| ds? What are they

computing?

2. Suppose for the remainder of this exercise that |γ̇(s)| = 1 for all s. Suppose we define n(s)
to be the unit vector obtained by rotating γ π/2 in the clockwise direction. Define κ to be
that scalar that makes γ̈(s) = κ(s)n(s) true. What do

∫
γ κ(s)ds and

∫
γ |κ(s)|ds compute?

3. Compute κ for a circle if radius r.

4. Compute
∫
γ κ(s)ds and

∫
γ |κ(s)|ds for a circle of radius r.

5. Suppose γ parameterizes the boundary of a fattened U shape region – see figure 2.1. Compute∫
γ κ(s)ds and

∫
γ |κ(s)|ds. You can assume that γ is 4 half circles glued together.

Figure 2.1: The boundary of a fattened U shaped region

6. Can you prove that for a simple close curve γ,
∫
γ κ(s)ds = 1? Suggestion: prove that if we

define G : γ(s)→ S1 mapping the point γ(s) to the outward normal at γ(s), κ is the signed
Jacobian of G. That is, if we define s to be the length parameter on γ and θ to be the
parameter on S1, κ = dθ

ds .
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Exercise 2.6.26. In the exercise, we explore parameterizations of curves. We assume that γ :
[a, b]→ Rn is smooth and that γ̇(t) 6= 0 for all t ∈ [a, b].

1. Define s = f(t) =
∫ t
a |γ̇(u)|du

2. Prove that s = f(t) smooth and that t = f−1(s) is smooth as well. (Use the inverse function
theorem!)

3. Show that ν(s) ≡ γ(f−1(s)) is smooth and that |ν̇(s)| = 1 for all s ∈ [0, f(b)].

4. We will say that a parameterization f : [a, b] → [a, b] is regular if f is smooth and ḟ > 0 on
[a, b]. Denote the family of all regular parameterizations by R.Suppose that h : Rn → R is

continuous. Show that inff∈R
∫ b
a h(γ(f(t)) dt = infs∈[a,b] h(γ(s)) and supf∈R

∫ b
a h(γ(f(t)) dt =

sups∈[a,b] h(γ(s)).

5. If instead, we evaluateHγ(f) ≡
∫ b
a h(γ(f(t))|dγ(f(t))

dt |(t) dt, show thatHγ(f) is invariant under
changes in f (changes in parameterization). Hint: Notice that Hγ(g) = Hγ(g ◦ g−1 ◦ f) and
use the fact that regular parameterizations have smooth inverses.

Exercise 2.6.27. Suppose that γ : S1 → Rn is smooth i.e., γ parameterizes a smooth, closed
1-dimensional curve in Rn. Prove that for any n− 1 dimensional subspace of Rn, there are at least
two points γ(s1) and γ(s2) such that γ̇(s1) ∈ S and γ̇(s2) ∈ S. Hint: Every such Subspace has a
unique (up to sign) normal vector.

Exercise 2.6.28. Suppose that v is a smooth vectorfield in Rn for which wv ≡ ∇ × v 6= 0
everywhere. Let Γ be a curve segment in Rn that is nowhere tangent to wv. Let M be the 2-
dimensional subset of Rn that is swept out by Γ under the flow generated by wv. Suppose N ⊂M
and that ∂N is a simple closed curve. Show that

∫
∂N v · dl = 0.

Exercise 2.6.29. in Exercise 2.1.11 we found that when the cost per unit length had a discontinuity
in it, minimal paths could develop kinks in them – discontinuities of the tangent vector, at the
interface between regions of constant cost. (This is precisely what happens with the transmission
of light at the interface between regions of different refractive indexes.) Prove that if w : Rn → R
is smooth and we minimize

∫
γ w(γ(s))|γ̇(s)| ds over γ satisfying γ : [a, b] → Rn, γ(a) = x and

γ(b) = y, minimal paths cannot have kinks in them.suggestion: assume there is a kink at x, zoom
into the kink so that w(x) is almost constant in a ball centered at x, and construct a comparison
path with smaller cost.

Exercise 2.6.30. Continuing along the lines of Exercise 2.6.27, suppose that γ : [a, b] → Rn,
γ is smooth and that |γ̇|(s) = 1 for all s ∈ [a, b]. Show that if n ≥ 2, then the {γ(s)|s ∈
[a, b]} 6= Sn. Suggestion: look up Sard’s theorem. Another Suggestion: For those of you that
have some acquaintance with Hausdorff measures, another proof can be obtained by realizing that
H1(γ([a, b])) = b− a <∞⇒ Hα(γ([a, b])) = 0 for α > 1



2.7. DIFFERENTIATION 25

2.7 Differentiation

Approximation by linear functions and operators, or more generally, by simpler classes of func-
tions, in some Small neighborhood of a point is the idea behind differentiation or generalized
differentiation. In this section, we look at some of these ideas. We begin with derivatives as lin-
ear approximations. In addition to Fleming’s book, I also recommend the chapter Derivatives,
Geometrically in the book I am writing. I will send this to all of you in case you do not have a
copy.

2.7.1 Derivatives as linear approximations

The classical definition of derivative for f : R → R is of course f ′(x) = limh→0
f(x+h)−f(x)

h .

Linear maps from R to R are simply lines through the origin, so f ′(x) = limh→0
f(x+h)−f(x)

h can be

restated as limh→0
f(x+h)−(f(x)+Lx(h))

h = 0 where Lx(h) = the linear map (f ′(x))h. Note that this
in turn, can be simply restated as f(x+h)− (f(x) +Lxh) = o(h) or f(x+h) = f(x) +Lxh+ o(h).
Now we have a definition that generalizes to arbitrary dimensions: f : B1 → B2 (and B1 and B2

are Banach spaces which are finite or infinite dimensional) is differentiable at x ∈ B1 if there is a
continuous linear operator from B1 to B2, Lx, such that f(x + h) = f(x) + Lx(h) + o(|h|). The
linear map Lx is the derivative of f at x.

Higher order derivatives for functions f : R → R are pretty simple – simply iterate the
classical definition over and over. In higher dimensions, we no longer have such a simple reduction.
Suppose that f : Rn → Rm then Df(x) is a linear map that depends on x ∈ Rn. If f is continuously
differentiable, then we have that Df : Rn → L(Rn,Rm). The second derivative at any point in
Rn is a Linear map from Rn to L(Rn,Rm), i.e. D2f(x) ∈ L(Rn, L(Rn,Rm)) and D2f : Rn →
L(Rn, L(Rn,Rm)). Computationally speaking, once we have chosen bases for Rn and Rm, the first
derivative will be an m by n matrix that varies as we move from point to point in Rn, the second
derivative m by n by n tensor, the third derivative is a m by n by n by n tensor, etc. So, higher
order derivative at a point in the domain can be thought of both as linear map and as multilinear
map.

In the following set of exercises, we will use the Hausdorff distance between sets. Suppose that
E and F are sets in a metric space X and ρ is the metric. Define ρ(x,E) = infy∈E ρ(x, y). Now
define Nε(E) ≡ {x|ρ(x,E) ≤ ε}. Define H(E,F ) ≡ inf{ε | E ⊂ Nε(F ) and F ⊂ Nε(E)}. We will
also use ρ(E,F ) ≡ infx∈E,y∈F ρ(x, y)

Exercise 2.7.1. Suppose that f(x) = x2
1 + x2

2 + x2
3. Show that Lx(h) = 2x1h1 + 2x2h2 + 2x3h3.

Exercise 2.7.2. Represent x ∈ Rn by x = (x1, x2, ..., xn). Suppose that all the partial derivatives
of f : Rn → R, fxi ≡

∂f
∂xi

, exist in B(x̂, ε), and are continuous there. Prove that Lx̂(h) =
fx1(x̂)h1 + fx2(x̂)h2 + · · · fxn(x̂)hn.

Exercise 2.7.3. Let f(x) = x2 sin( 1
x). Prove that L0(h), the derivative of f(x) at x = 0, exists

and equals 0 · h.

Exercise 2.7.4. Letting f(x) be the function from Exercise 2.7.3, prove that f ′(x) is not continuous
at x = 0.
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Exercise 2.7.5. Find an example of a function f : R2 → R1 and a point x ∈ R2, such that fx1
and fx2 exist at x, yet nevertheless, f is not differentiable at x.

Exercise 2.7.6. Suppose that f : R1 → R1 is smooth (has derivatives of all orders and all those
derivatives are continuous). In this exercise we explore how the set of roots of f changes under
simple perturbations. We see why this is relevant for dynamical systems.

1. Suppose that f(y) = 0⇒ f ′(y) 6= 0. Prove that the set of roots does not have an accumulation
point.

2. Suppose that we focus on a compact subset K ⊂ R. Show that the set {x | f(x) = 0, x ∈ K}
is a finite set.

3. Now consider g(x) ≡ f(x) +λ and define Rλ ≡ {x | g(x) = 0, x ∈ K}. Assume that R0 ⊂ Ko

(recall that Ko is the interior of K). #R0 = #Rλ for all |λ| ≤ ε for some ε > 0, where #S
is the number of elements of the set S.

4. Suppose that infx∈R0 |f ′(x)| > C1 > 0 and supx∈R |f ′′(x)| < C2 < ∞. Find δ(C1, C2) such
that H(R0, Rλ) < ε when λ < δ(C1, C2).

5. Suppose now that K = [a, b], f(a) > α and f(b) > α. Suppose also that |f ′′(x)| 6= 0 whenever
f ′(x) = 0. Again we define g(x) ≡ f(x) + λ and we will look at λ ∈ [−α, α]. Show that the
conditions we have assumed imply that

(a) the points x in K where f ′(x) = 0 are isolated, and therefore

(b) there are a finite number of points x in K where f ′(x) = 0,

(c) #Rλ is even except when λ = −f(x̂) and f ′(x̂) = 0 in which case it might or might
not be even. Give examples of functions in which #Rλ changes and the #Rλ becomes
odd for some λ and also examples of functions in which #Rλ changes and #Rλ never
becomes odd for any λ ∈ [−α, α].

(d) Suppose that dx
dt = g(x) = f(x)+λ. The behavior is determined by the roots and sign of

g, as well as the sign of dg
dx at the roots of g. What do you observe about correspondence

between the behavior of the solutions of dxdt = g(x) = f(x)+λ and the plot of Rλ versus
λ, with the points of Rλ labeled by the sign of g’ at those points?

hint: work this all out for the case in which f(x) = 1
6(x− 1)(x− 2)(x− 3)(x− 4), a = 0 and

b = 5 and [−α, α] = [−3.9, 3.9]. Draw pictures!

Comment: in this problem, we are developing some of the pieces of bifurcation theory, the study
of the qualitative changes in behavior of dynamical systems as a system parameter or parameters
change.

Exercise 2.7.7. Prove that if f is differentiable everywhere, |f ′(x)| ≤ C|f(x)| everywhere, and
f = 0 anywhere on the real line, then f(x) = 0 everywhere. (This problem was given to me by
Yunfeng Hu.)
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2.7.2 Cones and Tangent Cones

A cone, Cθ
v,x̂, around direction vector v ≡ (1, a) ∈ R2) and centered on x̂ = (x̂1, x̂2) is the set

of x = (x1, x2) such that cos−1(
∣∣∣ x−x̂|x−x̂| ·

v
|v|

∣∣∣) ≤ θ, where we assume that θ < π/2. An equivalent

cone-based definition of derivative, says that f : R1 → R1 is differentiable at x̂ if there is
a direction wx̂ = (1, f ′(x̂)) such that for any ε > 0, there is a δ > 0 such that x ∈ B(x̂, δ), all
(x, f(x)) ∈ Cεv,x̂. This definition generalizes to all dimensions.

Define the projection of a set F onto the unit ball to be P1(F ) ≡ { x|x| | x ∈ F}. The tangent

cone of E ⊂ Rn at a point x ∈ Rn, is the set {R ≥ 0} · {
⋂
i clos(P1(B(x, 1

i ) ∩ E \ {x}))}.

Exercise 2.7.8. Prove that for f : R1 → R1, the cone based definition of derivative is equivalent
to the linear approximation definition.

Exercise 2.7.9. Generalize the cone-based definition of derivative to the case of f : Rn → R1.

Exercise 2.7.10. Generalize the cone-based definition of derivative to the case of f : Rn → Rm.

Exercise 2.7.11. Show that f is differentiable at x̂ with derivative f ′(x̂) if and only if the tangent
cone of the graph of f in R2, at (x̂, f(x̂)), is the line x2 = f ′(x̂)x1.

Exercise 2.7.12. Find a 1-dimensional subset of R2 that is not the graph of any f : R1 → R1, yet
it still has tangent cones at every point equal to lines in R2. Hint: What kind of curve that does
not cross itself cannot be a graph no matter how you rotate the 2-dimensional space the curve live
in?

2.7.3 Taylor Series

As far as I know Newton was the first to use power series to solve differential equations, though I
suspect, like many other things, others were there or almost there before he moved in this direction.
At any rate, the idea of using power series to approximate functions locally and globally has been
around for a long time. In this section, we look at Taylor series, which are always better and better
approximations for f as the differentiability of f increases. (This is true even when the Taylor series

diverges.) The Taylor series of a function f : R1 → R1 at a point a is given by
∑∞

n=0
fn(a)(x−a)n

n!

where fn denotes dn

dxn f . We define T a,kf (x) ≡
∑k

n=0
fn(a)(x−a)n

n! . Note that the Taylor series need
not converge even if f is infinitely differentiable or it may converge but not be equal to the function
in any neighborhood of a.

If a function has k + 1 derivatives at x = a and those derivatives are continuous in B(a, ε) =

[a − ε, a + ε], then we have that in this neighborhood f(x) = T a,kf (x) + fk+1(c)(x−a)k+1

(k+1)! for some

c ∈ [a, x] for x > a c ∈ [x, a] if x < a. The remainder term fk+1(c)(x−a)k+1

(k+1)! is obtained using the
mean value theorem.

In higher dimensions, we have a completely analogous result: Suppose that F : Rn → Rm. Fix
a ∈ Rn. Define for any x ∈ Rn, define h = x− a. Let DkF : Rn → L(Rn, L(Rn, ...L(Rn,Rm)...)) be
the nth derivative (represented by an m×n× n× ...× n

k n’s
tensor) taking k input vector increments.
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Then the Taylor series of F at a is
∑∞

i=0
Dif(a)hi

i! where Dif(a)hi = Dif(a)(h, ..., h
k h’s

). Defining

T a,kF =
∑k

i=0
Dif(a)hi

i! , we get that if the first k derivatives exist and are continuous in B(a, δ), and

the k+1 derivative exists everywhere in B(a, δ), then for any x ∈ B(a, δ), F (x) = T a,kF +Dk+1f(c)hk+1

(k+1)!

for some c ∈ B(a, δ).

Exercise 2.7.13. Look up and read the proofs of the Taylor series with remainder expressions on
pages 386 and 96 of Fleming’s book.

Exercise 2.7.14. In the cone based definition of derivative, the width of the cone Cθwx̂,x̂, θ decreases
as the ball about x̂ decreases in radius. Suppose that f ′′ ...

Exercise 2.7.15. Write out the Taylor series centered at x = 0 for each of these functions:

1. sin(x)

2. cos(x)

3. tan(x)

4. arcsin(x)

5. arccos(x)

6. arctan(x)

7. ln(x)

8. ex

9. e−x
2

Exercise 2.7.16. Prove that if all the coefficients of the Taylor polynomial for f(x) are positive,
and the series converges to f(x) for all x, then f(x) →

x→∞
∞.

Exercise 2.7.17. How far out in the series for e−100 does one have to go to be guaranteed to be

within 10−6 of the correct answer? That is, what N makes
∑N

i=0
(−100)i

i! differ from e−100 by no
more than 1

1,000,000?

Exercise 2.7.18. Given the differential equation y′′ − y′ + y = 0, and y =
∑∞

i=0 aix
i, find the

ai’s and then find the solutions in terms of functions studied in Exercise 2.7.15. Confirm these are
solutions by direct differentiation and substitution into the differential equations.
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2.7.4 The Trickier (cooler) Approximation

In this subsection, we discuss that cool fact that |f(x) − T a,kf (x)| = o(|x − a|k) even if the only

thing we know is that f i(x) exists at x = a for i = 1, 2, ..., k. This is a generalization to higher
orders of the statement that if f is differentiable at a, then f(x)− (f(a) +f ′(a)(x−a)) = o(|x−a|)
where we only need that f ′ exists at a, in order for the approximation to be true. Of course we
get existence in a neighborhood of a for lower order derivatives from the existence of higher order
derivatives at a. The source for this theorem is Kennan Smith’s interesting A Primer in Analysis.
(Every analyst should have a copy.)

Theorem 2.7.1. If f i(a) exists for i = 1, 2, ..., k, then |f(x) − T a,kf (x)| = o(|x − a|k) for some
interval |x− a| ≤ δ.

Proof of Theorem 2.7.1.
Suppose that f i(a) exists for i = 1, 2, ..., k. We note that:

1. (T a,kf )′ = T a,k−1
f ′ .

2. if k ≥ 2, fk(a) existing, implies that f i exists in a neighborhood of x = a for i = 1, 2, ..., k−1
and f i is continuous for in a neighborhood of x = a for i = 1, 2, ..., k−2 and f i. In particular,
if k ≥ 3, then f(x)− f(a) =

∫ x
a f

1(t)dt.

3. Now a lemma that we will use more than once in the proof and is generally useful in other
circumstances:

Lemma 2.7.1. if f(x) = o(xk) then
∫ x

0 f(y)dy = o(xk+1).

Proof of Lemma 2.7.1.
Since f(x) = o(xk), f(x) = h(x)xk, where h(x) →

x→0
0. Define h+(x) = sup

t∈[−x,x]
|h(t)|. Note

that h+(x) →
x→0

0 and |h+(x)| ≥ |h(x)| for all x. Notice that |
∫ x

0 h(t)tkdt| ≤ h+(x)
∫ x

0 t
kdt =

h+(x)
k |x|

k+1

4. using the previous items, if k ≥ 3, then if |f ′(x)− T a,k−1
f ′ | = o(|x− a|k−1), we conclude that∣∣∣∫ xa (f ′(t)− T a,k−1

f ′ (t)
)
dt
∣∣∣ =

∣∣∣f(x)− T a,kf (x)
∣∣∣ = o(|x|k). So the theorem is true for k if it is

true for k − 1.

5. We note that the case of k = 1 is just the definition of derivative. We need only prove the
theorem for the case k = 2. Because, in the case that k = 2, we cannot directly assume that
f(x)− f(a) =

∫ x
a f

1(t) dt (=
∫ x
a f
′(t) dt), we have to put a bit more work into this case.

(a) As noted above, because f2(a) exists, f1(x) = f ′(x) exists in some neighborhood of a
and we have that f ′(x)− f ′(a)− f ′′(a)(x− a) = h(|x− a|)(x− a), where h(|x− a|)→ 0
as x→ a.

(b) Suppose that g′(y) exists for all y ∈ [a, x]. Choose ε > 0 and note that for each point
y ∈ [a, x], there is a ball B(y, δy) such that g(z) − g(y) = K(z)(z − y) and g′(y) − ε ≤
K(z) ≤ g′(y) + ε. Because [a, x] is compact there are a finite number of these balls
(intervals!) that cover [a, x]. We can choose yi such that a = y1 < y2 < · · · < yN = x
and g(yi+1)− g(yi) = Ki(yi+1 − yi) where g′(yi)− ε ≤ Ki ≤ g′(yi) + ε.
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(c) Apply the previous step to g = f − f ′(a)(x − a) − f ′′(a)
2 (x − a)2. We get that |g(x) −

g(a)| = |
∑

iKi(yi+1 − yi)| ≤
∑

i |Ki|(yi+1 − yi) and since that sum is dominated by∫ x
a h(|t − a|)(t − a) + ε dt and ε was arbitrary, we are done after a use of the above

lemma.

Exercise 2.7.19. Work through the details of step 5 above.

Exercise 2.7.20. explain why this theorem is a generalization of the definition of derivative to
high dimensions and exactly how the result varies from the result on remainders of Taylor series
from Section 2.7.3.

Exercise 2.7.21. Give an example of a function that is differentiable at x = 0 but differentiable
anywhere else.

Exercise 2.7.22. Prove that if a function f(x) has a second derivative at a point x = a, then in
some neighborhood of a, f(x) is Lipschitz.

Exercise 2.7.23. (*) Find an example of a function f : [0, 1] → R1 that is both differentiable
everywhere and Lipschitz, such that derivative is not continuous on a set with positive measure. (I
tried proving this was not possible. That was very hard, for a good reason – it is possible!)

2.8 Inverse and Implicit Function Theorems

The inverse function theorem tells us that if F : Rn → Rn is C1, then that function is invertible
locally at x if it’s linear approximation at x, DF (x) is invertible at x. And in that case, D(F−1)(x) =
((DF )(x))−1.

Suppose that m < n. The implicit function theorem says that we can represent a level set
of a function F : Rn → Rm passing through x̂ as a graph of a function φ : Rn−m → Rm when F is
C1 and there is some set of m columns of DF (x) that are linearly independent. That is, if there is
an invertible m×m submatrix of DF (x̂), we can find such a φ. Recall that an m× n matrix M ,
m ≤ n, is full rank if it has m independent columns.

Now suppose, without loss of generality, that the first m columns are independent and that we
represent x ∈ Rn as x = (y, z) where y ∈ Rm and z ∈ Rn−m. Therefore, x̂ = (x̂1, x̂2), x1 ∈ Rm
and x2 ∈ Rn−m. For the φ the implicit function theorem gives us, for some ε > 0, we have that for
z ∈ B(x̂2, ε) ⊂ Rn−m, F (φ(z), z) = F (x).

We can prove the implicit function theorem using the inverse function theorem.

Exercise 2.8.1. Look up the proof of the inverse function and implicit function theorems in
Fleming’s book and study them. You also might like the two chapters from the notes I wrote for
another course – I have included them here as Appendix A and B.

Exercise 2.8.2. Suppose that f : R1 → R1 and f ∈ C1(R1,R1), the space of C1 functions from
R1 to R1. At what points in the domain of f , is there a neighborhood such that, when restricted
to that neighborhood, f is invertible?
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Exercise 2.8.3. Suppose that f(x) = x3 − 4x + 1. Where is f locally invertible? For any given
x ∈ R where f is locally invertible, what is the maximal set of points Ex such that x ∈ Ex and
f |Ex is invertible?

Exercise 2.8.4. Suppose that f(x) = x2 − 4x + 7
4 . Where is f locally invertible? For any given

x ∈ R where f is locally invertible, what is the maximal set of points Ex such that x ∈ Ex and
f |Ex is invertible? What is the inverse function in those regions?

Exercise 2.8.5. Define f : R2 → R2 by f1(x1, x2) = x2
1 + x2

2 and f1(x1, x2) = x1 + x2. Where is
f locally invertible? For each x where x is locally invertible, what is the maximal Ex such that
x ∈ Ex and f |Ex is invertible?

Exercise 2.8.6. Define f : R2 → R1 by f(x1, x2) = x2
1 + x2

2. At what points in R2 can the level
sets of f be expressed locally as a graph of a function φ : R1 → R1?

Exercise 2.8.7. Define f : R3 → R2 by f1(x1, x2, x3) = x2
1 − x2

2 + x3 and f1(x1, x2) = x1 − x2. At
what points in R3 can the level sets of f be expressed locally as a graph of a function φ : R1 → R2?
What is φ at those points?

Exercise 2.8.8. Define f : R3 → R1 by f(x1, x2, x3) ≡ P1(x1) +P2(x2) +P3(x3) where The Pi are
polynomials of degree 2. How would you go about finding the points where you can express the
level sets of f as graphs of functions φ : R2 → R1. Choose specific second order polynomials and
find all the points where you can find a locally valid φ.

Exercise 2.8.9. For any f : Rn → R1 what is the criterion for determining if the level set at x is
locally an n-1-dimensional graph? (I.e. a graph of a function from Rn−1 dimensions to R1.)

Exercise 2.8.10. Assume that m < n, F : Rn → Rm and DF (x∗) is full rank. Use the facts that
(1) DF is full rank when the all the rows of DF are linearly independent and (2) the gradient of
a function is orthogonal to (normal to) the level sets of that function, to prove that the level set
a C1 F : Rn → Rm is locally n-m-dimensional at x if and only if the linear approximation to the
level set of F at x is n-m-dimensional.

Exercise 2.8.11. Construct another geometric understanding of the implicit function theorem by
proving that: If there is an m × m invertible submatrix of the m × n DF , the m-dimensional
coordinate plane associated with those m columns intersects the level set of F at one point only,
for each choice of the other n-m coordinates, as we stay in an ε neighborhood of x.

Exercise 2.8.12. The fact that the φ obtained by the implicit function theorem is smooth allows us
to conclude that it has a n-m-dimensional tangent space at every point. Prove that all unit vectors
tangent to the graph of φ at x do not lie in the span of the m linearly independent columns (i.e.
those selected in Exercise 2.8.11). Prove that, in fact, the minimum angle between those tangent
vectors and the m-dimensional coordinate plane corresponding to those m columns is bounded
away from 0.
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2.9 Convexity

Let f : H → R and E ⊂ H, where B is any complete inner product vector space (also called a
Hilbert space).

A function f is convex if f(α1x+α2y) ≤ α1f(x)+α2f(y) for all αi ≥ 0 satisfying α1 +α2 = 1
and a function f is strictly convex if f(α1x+ α2y) < α1f(x) + α2f(y) for all αi > 0 satisfying
α1 + α2 = 1.

A set E is convex if for any two points x and y in the set, α1x+ α2y is also in the set for all
αi ≥ 0 satisfying α1 + α2 = 1. A set E is strictly convex if, for x, y ∈ E, α1x + α2y is in the
interior of E when αi > 0 and α1 + α2 = 1.

The theory of convex sets and functions is a very rich subject. In nonlinear analysis, these are
the nicest sets and functions where everything in sight behaves as it should. You will encounter
some of this good behavior in the exercises below.

In all the exercises in this section, (1) we assume E is closed and convex and (2)
the notation carries over from one exercise to the next.

Exercise 2.9.1. Define d(x,E) ≡ infy∈E |x − y| where | · | is the usual 2-norm in Rn. Prove that
if x is a point not in E, then there is a unique closest point yx ∈ E.

Exercise 2.9.2. Denote the hyperplane through yx, orthogonal to x−yx by hyx,x−yx . Let Hyx,x−yx
denote the closed halfspace defined by hyx,x−yx such that for which x− yx is an outward pointing
normal vector. Show that E lies entirely in the closed halfspace Hyx,x−yx . A hyperplane that
intersects the boundary of E and contains E in one of the halfspaces it defines is called a supporting
hyperplane. Hint: see if you can prove that 〈y − yx, x− yx〉 is always non-positive.

Exercise 2.9.3. Prove that E =
⋂
x∈Ec Hyx,x−yx .

Exercise 2.9.4. (*) Show that the level sets of the distance function, LE(c) ≡ {x|d(x,E) = c > 0},
have tangent planes at every point of the level set. Show that those tangent planes are continuous
with respect to variation along the level set. Hint: if x ∈ LE(c) show that there is a δ small enough
that for w ∈ B(x, δ) ∩ LE(c), ε ≤ 〈x− yx, w − x〉 ≤ 0.

Exercise 2.9.5. (*) Use Exercise 2.9.4 to show that every point on the boundary of E has a
supporting hyperplane through it. Hint if y ∈ bdy(E) and it is not the nearest point for some
x ∈ LE(1), then d(y, LE(1)) > 1 and since LE(1) is closed and {y} is compact, there is a point
x ∈ LE(1) such that d(y, LE(1)) = |x− y| > 1. But there must also be a closer point yx ∈ bdy(E)
such that d(yx, x) = 1.

Exercise 2.9.6. Suppose that f : R1 → R1 and f is convex. Show that the left derivatives and
right derivatives, f ′L(x) ≡ lim

y↑x
f(x)−f(y)

x−y and f ′R(x) ≡ lim
y↓x

f(x)−f(y)
x−y , exist at each point in the domain

and that f ′L(x) = f ′R(x) = f ′(x) except when x ∈ J ⊂ R1, where J is at most countably infinite.

Exercise 2.9.7. Suppose that f : D ⊂ R1 → R1, where D is a closed (possibly infinite) interval in
R. Show that epigraphs Ef ≡ {(x, y) | f(x) ≤ y} are convex and closed in R2. Show that f is a
convex function if and only if the epigraph Ef is convex.
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Exercise 2.9.8. Assume that f ′(x∗) exists. Show that the tangent line to f at x∗, {(x, y) | f ′(x∗)x+
(f(x∗)− f ′(x∗)x)}, is a supporting (1-dimensional) hyperplane of the epigraph Ef at (x, f(x)).

Exercise 2.9.9. Suppose that Eα for all α ∈ A, where A is an arbitrary index set (not necessarily
countable). Prove that E ≡

⋂
α∈AEα is convex.

Exercise 2.9.10. Define fM (x) = supf∈F f(x) where F is a class of uniformly bounded, convex
functions, f : [a, b]→ R and [a, b] is a bounded interval. Show that FM is a convex function. Hint:
What is the relationship between the epigraphs if the f ’s in F and the epigraph of FM .

Exercise 2.9.11. The uniformly bounded condition in Exercise 2.9.10 is not actually necessary,
but we assumed it to avoid dealing with functions that take on the value +∞. Now we allow infinite
values. Such functions take on values in the extended reals, f : R→ R̄ where R̄ = {R∪{−∞,∞}}.
Prove that f is convex if and only if the epigraph is convex in R2. Note: the epigraph is still
{(x, y) | f(x) ≤ y < ∞} ⊂ R2. Define fM (x) = supf∈F f(x), where F is any class of convex
functions f : R1 → R1. Prove that FM is convex.

Exercise 2.9.12. The definition of epigraph Ef ⊂ H× R is identical for any f : H → R where H
is a complete inner product space. Go through the arguments proving f is convex if and only if Ef
is convex for the case f : R1 → R̄ to see that they translate without change to the case f : H → R̄.

Exercise 2.9.13. A function f is said to be concave if -f is convex and is said to be strictly concave
if -f is strictly convex. Prove that f is concave if f(α1x+α2y) ≥ α1f(x)+α2f(y) for all α1, α2 ≥ 0
and α1 + α2 = 1.

Exercise 2.9.14. Let E be a bounded, closed, convex subset of R2. Let D be the projection of E
onto the x-axis. Define fE : D → R by fE(x) = H1({{x} × R} ∩ E). Show that fE is concave.

Exercise 2.9.15. Prove that every line through (x, f(x)) with slopes ranging from fL(x) to fR(x)
are supporting lines for f at (x, f(x)).

Exercise 2.9.16. Let Hf be the collection of supporting lines of the convex function f . Show
that f(x) = g(x) ≡ sup

h∈Hf
h(x). Consequently, the epigraph of f is the intersection of the upper

halfplanes defined by the supporting lines.

Exercise 2.9.17. Let f ∈ C2(R1,R1) and suppose that f ′′(x) ≥ 0 for all x ∈ R. Show that f is
convex. Hint: consider g(x) = f(x)− f(x∗)− f ′(x∗)(x− x∗) and use what you know about Taylor
series to compute g(x).

Exercise 2.9.18. Suppose that f ∈ C2(R1,R1) and f is convex. show that f ′′(x) ≥ 0 for all x ∈ R

Exercise 2.9.19. Let f, g ∈ C2(R1,R1) be convex. Assume also that f and g are (a) non-negative
and (b) have derivatives whose signs always agree. Prove that w ≡ fg is also convex. Give examples
to demonstrate why conditions (a) and (b) are both necessary.
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Exercise 2.9.20. Suppose f : Rn → R1 is convex. Show that the sublevel sets Sf (c) ≡ {x ∈
Rn | f(x) ≤ c} are convex. Give an example of a non-convex function g whose sublevel sets Sg(c)
are all convex.

Exercise 2.9.21. If f(x) → ∞ as |x| → ∞, then we say f is coercive. To be completely clear,
we mean that for every c > 0, there exists an N > 0 such that |x| > N implies f(x) > c. Prove
that a coercive, convex function f has a minimal value fm and that the set M ≡ {x | f(x) = fm} is
convex. Hint: choose a ball B(0, C) = {x | |x| ≤ C} big enough that f(x) > 2f(0) for x ∈ B(0, C)c

and use the fact that {x f(x) ≤ C} is a compact set.

Exercise 2.9.22. Give an example of a convex function that does not have a minimal value.

Exercise 2.9.23. We will say that f is directionally coercive if, for all v ∈ ∂B(0, 1) ⊂ Rn,
f(sv) →

s→∞
∞. Prove that when f is convex, directionally coercive implies coercive. Hint: suppose

that f(0) = α. Define R(v) = sup{r|f(sv) < 2|α| ∀s < r}: i.e. r = R(v) is the smallest radius for
which f(rv) = 2|α|. Now suppose that sup

v∈∂B(0,1)
R(v) =∞. Because ∂B(0, 1) is compact, there is a

v∗ that is the limit of vi’s such that R(vi) diverges as i→∞. By taking points on the rays in the
directions vi, we can prove that f(sv∗) ≤ 2|α| for all s > 0. This is a problem. Also, because f is
convex, for s > R(v), f(sv) ≥ 2|α|.

Exercise 2.9.24. (*) Give an example f : R2 → R1 that is continuous and directionally coercive
but not coercive.

Exercise 2.9.25. Show that a coercive, strictly convex function has a unique minimizer x∗ such
that f(x∗) < f(x) for all x 6= x∗.

Exercise 2.9.26. (*) Suppose that f : x ∈ Rn → y ∈ R1, f ∈ C1(Rn,R1) and that f is minimal
at x∗. Prove that the hyperplane y = 〈0, x〉+ f(x∗) is a supporting hyperplane of the function at
(x, f(x∗)). Show that y = h(x) = 〈∇f(z), x− z〉 + f(z) is a supporting hyperplane at (z, f(z)).
Use the fact that f is convex to conclude that if x is not (globally!) minimal, then ∇f 6= 0.

Exercise 2.9.27. Even though Exercise 2.9.26 implies that gradient descent cannot converge unless
we are converging to a minimizer, we are not guaranteed we are converging very fast.

1. Construct a convex function f : R1 → R1, for x = 0 is the unique minimizer, such that if
dx
dt = −f ′(x), where t is in seconds, it still takes 10100 seconds to travel from −1 to 0 unit of
distance. Hint: play with f(x) = |x|.

2. (*) Create a smooth, strictly convex f with (unique) minimizer at x = 0, such that the time it
takes to descend the gradient (i.e. follow evolution in the domain specified by the differential
equation ẋ(t) = −f ′(x)) from x = 1 to x = 0 is (a) T < ∞ or (b) T = ∞. Hint: consider
f(x) = |x|α.
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Exercise 2.9.28. Define f∗, the Legendre-Fenchel transform of f , by

f∗(k) ≡ sup
x∈Rn

(〈k, x〉 − f(x))

, where k is in the dual space to Rn which we have identified, via the inner product with Rn. In
other words, k lives in the space of gradients. Transforming again,

f∗∗(x) ≡ sup
k∈Rn

(〈k, x〉 − f∗(k))

where now x is in the double dual to Rn which is just Rn. Prove that if f : Rn → R1 is convex,
then f∗∗ = f . Hint: note that h(x) ≡ 〈k, x〉−f∗(k) is a supporting plane for the function f . Note:
f* frequently attains infinite values.

Exercise 2.9.29. Assume f : R1 → R1. Compute f∗ and f∗∗ when:

1. f(x) = |x|

2. f(x) = x2

3. f(x) =


∞ x < −1
0 −1 ≤ x ≤ 1
∞ 1 < x

Exercise 2.9.30. Prove that f∗∗ is always convex even if f is not.

2.10 Inequalities

Inequalities are at the center of analysis: pick up any advanced book on analysis, and that will
stand out. You have already encountered this in these problems/notes, but now we dive into the
classical inequalities.

When we are working in an inner product space, inequalities of the form 〈w, x〉 < c or 〈w, x〉 ≤ c
pop up all the time. Understanding that there are the open and closed half spaces bounded by
〈w, x〉 < c, with outward pointing normal w, allows us to reason with these inequalities much more
intuitively and efficiently. In general, inequalities of the form f(x) < c or f(x) ≤ c are sublevel
sets of f , and in the case that f is continuous, are open and closed, respectively.

Of course, even the most basic definitions in analysis depend on inequalities: f is continuous at
some fixed x∗ if for every ε > 0 there is a δ > 0 such that |y−x∗| < δ implies that |f(y)−f(x∗)| < ε.

Probably the simplest inequality that is nevertheless central to the study of inner product spaces
is the Cauchy-Schwarz inequality.

2.10.1 Cauchy-Schwarz

Suppose that |x| is the 2-norm, |x| =
√
x2

1 + · · ·+ x2
n. Then

|x · y| ≤ |x||y|.
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Note that the left hand side is the 2-norm of a scalar i.e. the absolute value of a scalar. Actually,
if we are in an inner product space H (e.g a Hilbert space) and 〈f ,g〉H is the inner product of f
and g in H, then we have that

| 〈f ,g〉H | ≤ |f ||g|

where |f | = | 〈f , f〉H |
1
2 .

Exercise 2.10.1. Prove Cauchy’s inequality which states that for all a, b ∈ R, ab ≤ a2

2 + b2

2

Exercise 2.10.2. Prove Cauchy’s inequality with ε which states that for all a, b ∈ R, ab ≤
εa2

2 + b2

4ε .

Exercise 2.10.3. Prove the Cauchy-Schwarz inequality in an real inner product space. Hint: Prove
it for the case in which |f | = |g| = 1 and notice that the general case reduces to that case very
quickly. Now consider the fact that 0 ≤ 〈f + εg, f + εg〉 for all ε including ε = ±1.

Exercise 2.10.4. Prove the Cauchy Schwarz inequality in the case you are working in an inner
product space over the complex numbers. (Recall that 〈αx, y〉 = α 〈x, y〉, 〈x, αy〉 = ᾱ 〈x, y〉 and
〈x, y〉 = ¯〈y, x〉.) Hint: You can get this by using the fact that 0 ≤ 〈x+ αy,+αy〉 for all complex α.
Computing, we get

〈x+ αy,+αy〉 = 〈x, x〉+ α 〈y, x〉+ ᾱ 〈x, y〉+ |α|2 〈y, y〉 .

Now let beiθ = 〈y, x〉 and α = te−iθ. Notice that the resulting expression is a positive quadratic in
t ... (source: Conway’s A course in Functional Analysis).

Exercise 2.10.5. Notice that the CS-inequality in R2 has been known to you for a long time; in
fact you have a more informative form of it from pre-calculus, x · y = cos(θ)|x||y|. In arbitrary real

inner product spaces, we define the angle between two unit vectors to be arccos
(
〈x,y〉
|x| |y|

)
. Prove

x ·y = cos(θ)|x||y| in R2 using only facts about trig functions and rotations in R2. Hint: prove that
rotations of the coordinate system leave dot products unchanged.

Exercise 2.10.6. Let H and K be two linear subspaces of Rn and suppose that H 6⊂ K and
K 6⊂ H. Define PS(x) to be the projection of x onto the subspace S. We define the angle

∠(H,K) = arccos

(
min

x∈B(0,1)∩H

(
max

y∈B(0,1)∩K
〈x, y〉

))
. Find example spaces H and K demonstrat-

ing that ∠(H,K) 6= ∠(K,H) can happen. Hint: show that this angle measure tells us the maximum
rotation needed to rotate any vector in H so that it is contained in K.

2.10.2 Jensen’s

The most elementary form of Jensen’s inequality is really just the inequality used to define convex
functions: f : Rn → R1 is convex if

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)
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Now suppose that
∑

i αi = 1, αi ≥ 0 for i = 1, ..., n, α(x) ≥ 0 and
∫
α(x) dx = 1. Jensen’s

inequality generalizes this to

f

(
n∑

i=1

αixi

)
≤

n∑
i=1

αif(xi)

and even to

f

(∫
α(x)x dx

)
≤
∫
α(x)f(x) dx;

i.e. if f is convex, f satisfies both of these generalizations of the inequality satisfied by definition.
Of course the opposite inequalities hold for concave functions.

Exercise 2.10.7. Prove both forms of Jensen’s inequality. Hint: prove the second (integral) form
for nice smooth compactly supported functions α that satisfy

∫
α(x) dx, then approximate arbitrary

positive α satisfying
∫
α(x) dx with smooth α’s to get the desired results.

Exercise 2.10.8. Use Jensen’s inequality to prove Young’s Inequality, which states that a, b ∈ R,
ab ≤ ap

p + bq

q for 1
p + 1

q = 1 and a, b > 0. Hint: ex is convex.

Exercise 2.10.9. Prove that 2e
y
2 ≤ 1 + ey and find the only point where equality holds. Prove

that this is the only point. Hint: ex is strictly convex and e0 = 1.

Exercise 2.10.10. Choose any α > 1 and assume that y ≥ 0. Prove that (1 + y)α ≤ 2α−1(1 + yα).
Again find the one value of y where equality holds and prove that this is the only value where
equality is obtained. Hint: xα (we assume x ≥ 0) is strictly convex for α > 1

2.10.3 am-gm

The arithmetic mean and the geometric mean are monotonically related to one another: the
arithmetic mean is always greater than the geometric mean. But in fact, this is even true with the
generalized arithmetic and geometric means. Suppose that

∑
pi = 1 and pi ≥ 0 then we have that

Πn
i=1a

pi
i ≤

n∑
i=1

piai.

Choosing pi = 1
n for i = 1, ..., n we obtain the classic am-gm inequality:

n
√

Πn
i=1ai ≤

1

n

n∑
i=1

ai.

Exercise 2.10.11. Prove the generalized am-gm inequality. Hint: use Jensen’s inequality.
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2.10.4 Hölder

Suppose that 1
p + 1

q = 1 and
∫
|f |p dx <∞ and

∫
|g|q dx <∞. Then we have Hölder’s Inequality

∫
|fg| dx ≤

(∫
|f |p dx

) 1
p
(∫
|g|q dx

) 1
q

. Restating this using norm notation, we get:∫
|fg| dx ≤ |f |p|g|q

Exercise 2.10.12. Prove Hölder’s inequality using Young’s inequality from Exercise 2.10.8. Hint:
assume that |f |p = |g|q = 1 and then get the general case.

Exercise 2.10.13. Prove Hölder’s inequality using the am-gm inequality. Hint: this route actually
proves Young’s using am-gm and then Holder’s follows from that as in Exercise 2.10.12.

2.10.5 Minkowski’s

Minkowski’s inequality is the triangle inequality for Lp spaces. It states that

|f + g|p ≤ |f |p + |g|p, where |h|p ≡
(∫
|h|p dx

) 1
p .

Exercise 2.10.14. Prove Minkowski’s inequality. Hint:

|f + g|p = |f + g|p−1|f + g|
≤ |f + g|p−1(|f |+ |g|)

2.10.6 Other Inequalities

The most famous, overtly geometric, inequality is the isoperimetric inequality which states that,
given a fixed C > 0 the n-dimensional body E that maximizes Hn(E) given the constraint that

Hn−1(∂E) = 1 is the ball of radius r =
(

1
nω(n)

)n−1
. This is the same answer that you obtain in

the dual problem of minimizing surface area with fixed volume. Balls are optimal – they have the
lowest surface area

volume ratio. We can restate this as

Hn−1(∂E)

(Hn(E))
n−1
n

≥ nω(n)
1
n .

More often we see it stated as

Hn−1(∂E) ≥ nω(n)
1
n (Hn(E))

n−1
n

which is call the isoperimetric inequality.

Exercise 2.10.15. Show that minimizing surface area for a fixed volume gives the solution pairs as
does maximizing volume with a fixed surface area constraint. Note: volume here is n-dimensional
volume while surface area is n-1-dimensional volume of the boundary of the set in question.
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Exercise 2.10.16. Look up a proof of the isoperimetric inequality in the case that n = 2 and you
are trying to prove that disks minimize the boundary length for regions with fixed area.

The solution of every variational problem leads to an inequality: if (1) α = infx f(x) or (2)

α = infx
f(x)
g(x) , then (1’) f(x) ≥ α or (2’) (assuming g(x) > 0 for all x) f(x) ≥ αg(x). Simple

inequalities like this are used all the time. For example, since K(A) ≡ |A| – the norm of the linear

operator A : Rn → Rn – is the solution to supx 6=0
|Ax|
|x| , we know that |Ax| ≤ K(A)|x| for all x. For

example, this immediately implies that volumes are expanded by A by a factor of at most K(A)n,
which is sometimes all we need. (While det(A) is the exact expansion factor, computing the largest
eigenvector of a positive definite linear operator is easier than calculating the determinant of the
same operator, so this is actually practically useful as well.)

In probability, a central inequality is the Markov’s inequality Assume that f(x) ≥ 0 for all
x. Then:

µ{x|f(x) > δ} ≤
∫
f(x) dµ

δ

Chebyshev’s inequality is just an application of Markov’s inequality to the function |x−λ|2,
where λ ≡

∫
x dµ and µ is a probability measure:

µ{x||x− λ|2 > δ2} ≤
∫
|x− λ|2 dµ

δ2
.

Using probability notation we get:

P{|x− λ|2 > δ2} ≤ E[|x− λ|2]

δ2
.

Exercise 2.10.17. Prove Markov’s inequality.

Rounding off this section on inequalities, we mention that there are of course an endless
parade of inequalities we can study. In the last few exercises we take a look at a few more.

Exercise 2.10.18. Observe that g(x) ≤ h(x) for all x implies that f(g(x)) ≤ f(h(x)) for all x as
long as f is monotonically increasing. Use this to show that for x ≥ 0, we have

√
3x ≤

√
x2 − x+ 4.

Exercise 2.10.19. Prove that (ex)2

e ≤ ex2 find the single point where equality holds and show that
equality only holds at that point. Hint: (x− 1)2 ≥ 0 for all x.

Exercise 2.10.20. Show that

1. f(a) = g(a),

2. f ′(a) = g′(a),

3. f ′(x) < g′(x) for x > a and

4. f ′(x) > g′(x) for x < a,

imply that f(x) ≤ g(x) for all x.
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Exercise 2.10.21. Give an example that shows why f(x) ≤ g(x) implies very little about the
relationship between f ′(x) and g′(x). In particular, f(x) ≤ g(x) does not imply that f ′(x) ≤ g′(x)

Exercise 2.10.22. Prove that 1− x2

2 ≤ cos(x) for all x.

Exercise 2.10.23. Prove that x+ 1 ≤ ex for all x.

Exercise 2.10.24. Use Exercise 2.10.23 to show that lim
n→∞

(1 + 1
n)n ≤ e

Exercise 2.10.25. Continue Exercise 2.10.24, show that e ≤ lim
n→∞

(1 + 1
n)n. Hint: show that for

small enough x, ex < 1 + x+ x2.

Exercise 2.10.26. Suppose that P = {pi}ni=1,
∑n

i pi = 1 and pi ≥ 0 for all i. Define the entropy
H(P) of the probability distribution P to be H(P ) =

∑
i−pi ln(pi). Show that 0 ≤ H(P ) ≤ ln(n).

Hint: use Jensen’s, then the fact that ex is strictly monotonic, and a little bit of geometry.

If |f(x) − f(y))| ≤ K|x − y|, K < ∞ for all x and y, then we say that f is Lipschitz with
Lipschitz constant Lip(f) = K. Lipschitz functions are less regular than C1 functions, but the have
enough regularity that a great deal can be shown about them. In fact, it is reasonable to think
of them as the most general set functions for which calculus still works. We will study them in
more detail in section 2.15. Here are a few inequalities involving Lipschitz functions. We will write
f ∈ Lip(X,Y ) to mean that f is Lipschitz with domain X and co-domain Y

Exercise 2.10.27. Suppose that f is Lipschitz with Lip(f) = K. Show that wherever f is
differentiable, −K ≤ f ′(x) ≤ K.

Exercise 2.10.28. Define the diameter of a set E, diam(E), to be supx,y∈E |x− y|. Show that
if f ∈ Lip(Rn,Rm) with Lip(f) = K, then diam(f(E)) ≤ K diam(E).

Exercise 2.10.29. We will say that gauge of C is δ (ga(C) = δ), if sup
C∈C

diam(C) = δ and that C

covers E, E ⊂
⋃
C, if E ⊂

⋃
C∈C C. The length of a set E in Rn, H1(E), is defined to be the

lim
δ→0

(
inf

{C | ga(C)≤δ,E⊂
⋃
C}

∑
C∈C

diam(C)

)
.

Show that if f : R1 → R1 is in Lip(R1,R1) and Lip(f) = K, then

H1({(x, f(x)) ∈ R2 | x ∈ E}) ≤
√

1 +K2H1(E).

Exercise 2.10.30. Suppose that F ≡ {f | f(a) = c, f(b) = d, f ∈ Lip(R1,R1), Lip(f) = K}
Show that for any two f, g ∈ F , we have that −K2 (b− a)2 ≤

∫ b
a f(x) dx−

∫ b
a g(x) dx ≤ K

2 (b− a)2.
Show that if you include the c and d in the bounds, you can usually get better (tighter) bounds.
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2.11 Riemannian Integration

Integration is usually introduced either as the inverse to differentiation or as the area under curves.
Very soon after that, the fundamental theorem of calculus is at least stated. The version of
integration is almost always Riemann’s version, even though there are a host of other versions.
In this section, we review Riemannian integration and look at some of it’s properties. While the
simplicity, and practical applicability, of this version of integration has led to widespread use, there
are theoretical reasons why other versions were introduced and are used in analysis.

We now assume that f : [a, b]→ R1 and is bounded. A partition P of [a, b] is a finite, ordered
set of points P = {xi}ni=0 ⊂ [a, b] such that a < x0 < x1 < · · · < xn = b and xi < xi+1 for
all i. The gauge of the partition is the length of the longest of the n subintervals generated
by the n + 1 points. If we have two partitions of P1 and P2, we define P = P1 ∨ P2 to be the
partition generated by P1 ∪ P2. We will say that P < Q if Q ⊂ P . Define The gauge of a
partition P , ga(P ), to be the length of the longest subinterval xi+1 − xi, i = 0, 1, ..., n− 1. Define
P (f) =

∑n−1
i=0 (xi+1−xi)(supx∈(xi,xi+1] f(x)) and P (f) =

∑n−1
i=0 (xi+1−xi)(infx∈(xi,xi+1] f(x)). Define

P δ(f) = inf{P | ga(P )≥δ} P (f) and P δ(f) = sup{P | ga(P )≥δ} P (f). Define
∫ b
af(x) dx = limδ→0 P δ(f)

and
∫ b
a
f(x) dx = limδ→0 P δ(f). We say that f is Riemann integrable if

∫ b
af(x) dx =

∫ b
a
f(x) dx.

In that case we define
∫ b
a f(x) dx ≡

∫ b
af(x) dx =

∫ b
a
f(x) dx.

Exercise 2.11.1. Prove that P < Q implies that P (f) ≤ Q(f) and P (f) ≥ Q(f).

Exercise 2.11.2. Suppose that you have a sequence of partitions {Pi}∞i=1 such that ga(Pi) → 0.
Show that there exists another sequence of partitions Qi such that Qi < Pi, Qi+1 < Qi, and
ga(Qi) ≤ ga(Pi) for all i.

Exercise 2.11.3. Suppose that Pi+1 < Pi, Qi+1 < Qi, limi→∞ ga(Pi) = 0, and limi→∞ ga(Qi) = 0.
Prove that limi→∞ P i(f) = Qi(f) and limi→∞ P i(f) = Qi(f).

Exercise 2.11.4. Use Exercise 2.11.3 to show that we could just have well defined
∫ b
af(x) dx =

limi→∞ P i(f) and
∫ b
a
f(x) dx = limi→∞ P i(f) for any Pi+1 < Pi such that limi→∞ ga(Pi) = 0.

Exercise 2.11.5. Show that if f is continuous, then f is Riemann integrable.

Exercise 2.11.6. Find an example of a function f : [0, 1]→ R1 that is not Riemann integrable.

Exercise 2.11.7. Show that a function that is continuous at all but a finite number of points is
Riemann integrable.

Exercise 2.11.8. Suppose that f is monotonically increasing or decreasing on [a, b]. Prove that f
is Riemann integrable.

Exercise 2.11.9. Prove that if f and g are Riemann integrable then so is αf+βg for any α, β ∈ R1.



42 CHAPTER 2. ANALYSIS

Exercise 2.11.10. Prove that
∫ x

0 t dt = x2

2 .

Exercise 2.11.11. Prove that
∫ x

0 t
k dt = xk+1

k .

Exercise 2.11.12. Prove that if f is continuous, then d
dx

∫ x
0 f(t) dt = f(x).

Exercise 2.11.13. Suppose that f : [a, b] → R1 is continuous at all but a countable number of
points di and that at those points f has a jump discontinuity with jump size ji (can be positive or
negative!). Assume further that

∑
|ji| <∞. Show that f is Riemann integrable.

Exercise 2.11.14. Find a function f : [0, 1]→ R1 with an infinite number of jump discontinuities
with size ji such that

∑
|ji| diverges, but is Riemann integrable nonetheless.

2.12 Lebesgue Integration

This is an optional section that I nevertheless recommend covering, if not before
the GQE, immediately after, in order to give yourself an initial exposure to measure
theory.

Lebesgue measures and integration that were developed around the turn of the 19th century
have become the standard integration used in most situations in analysis. There are other forms
of integration that are used as well, some of them quite important, but Lebesgue integration is the
foundation for modern analysis. Lebesgue measures are special cases of the now standard Hausdorff
measures pervasive in geometric analysis. (You have actually already met Hausdorff measures in
Exercise 2.10.29.) We will briefly talk a bit more about Hausdorff measures at the end of this
section.

2.12.1 Outer measures

A function µ : 2X → R+∪{0}, where R+ denotes the positive real numbers, is called a measure (or
more commonly an outer measure) if (1) µ(∅) = 0 and (2) µ(E) ≤

∑
i µ(Ei) whenever E ⊂ ∪iEi.

Such measures are easy to construct. In this section, we will construct two such measures. But
unless we restrict which sets we consider to be “good” sets, we end up with paradoxes like the
Banach-Tarski paradox that says that, for example, we can cut apart 2 unit balls of radius 1 into
a finite number of pieces, rotate and translate them and put them back together into a single ball
of radius 1, thus making the idea of volume useless.

The approach we take to eliminating this is to allow only sets which cut other sets in reasonable
ways: we will say that F is measurable if and only if µ(E) = µ(E ∩ F ) + µ(E ∩ F c) is true for
all sets E. Such sets make up the set of µ-measurable sets in X. If the set of µ-measurable sets
contains all open sets, we say µ is a Borel measure.

A measure µ is called a Regular measure if for each E ⊂ X, there is a µ-measurable set F
such that E ⊂ F and µ(E) = µ(F ). A measure µ on Rn is a Borel regular measure if it is
Borel and regular and for each E ⊂ Rn, there is a Borel set F such that E ⊂ F and µ(E) = µ(F ).
A measure µ on Rn is a Radon measure if it is Borel regular and µ(K) < ∞ for all compact
K ⊂ Rn.

For these sets, we have many useful facts/theorems that we can establish. I refer you to Evans
and Gariepy’s book for the proof of these facts.
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1. Both ∅ and X are measurable.

2. if µ(E) = 0 then E is measurable.

3. E is measurable if and only if Ec = X \ E is measurable.

4. E ⊂ F ⊂ X implies that µ(E) ≤ µ(F ).

5. The set of measure sets is a σ-algebra: A collection of sets S is a σ-algebra if (1) it contains
both ∅ and X (2) if E ∈ S, then X \ E ∈ S (3) if each of {Ei}∞i=1 are in S, then

⋃
iEi ∈ S,

and (4) if each of {Ei}∞i=1 are in S, then
⋂
iEi ∈ S too.

6. if the sets {Ei}∞i=1 are pairwise disjoint and measurable and E =
⋃
iEi, then µ(E) =∑

i µ(Ei).

7. If Ei ⊂ Ei+1, then limi→∞ µ(Ei) = µ(
⋃
iEi).

8. If Ei+1 ⊂ Ei, then limi→∞ µ(Ei) = µ(
⋂
iEi).

9. If µ is a Radon measure on Rn. Then for any A ⊂ Rn, µ(A) = inf
O open, A⊂O

µ(O).

10. If µ is a Radon measure on Rn. Then for any µ-measurableA ⊂ Rn, µ(A) = sup
C compact, C⊂A

µ(C).

See Chapter 1 of Evans and Gariepy for much more on measures – I follow this chapter closely
at various places and I recommend this book very highly.

2.12.2 Lebesgue measure

We will focus on Lebesgue measure which is an outer measure generated by covers with rectangles.
A rectangle in Rn is any region R = I1× I2× · · · × In where the Ik are either all closed or all open,
bounded intervals i.e. Ik = [ak, bk] and −∞ < ak < bk < ∞ for k = 1, ..., n or Ik = (ak, bk) and
−∞ < ak < bk <∞ for k = 1, ..., n. We call these closed or open rectangles, respectively.

The volume of a rectangle R, v(R), is simply the product of the lengths of the sides of the
rectangle v(R) = Πk(bk − ak). Now we define Ln(E), the n-dimensional Lebesgue measure of a set
E ∈ Rn, to be the Ln(E) ≡ inf

R

(∑
R∈R v(R)

)
where R ranges over all possible countable collections

of rectangles covering E.
We say that f : Rn → R1 is Ln-measurable if f−1(U) is measurable when U is open. More

generally, we say that f : Rn → Rm is f−1(E) is measurable whenever E is measurable.

Exercise 2.12.1. Prove that Ln is an outer measure.

Exercise 2.12.2. Prove that Ln(R) = v(R).

Exercise 2.12.3. Prove that rectangles are measurable.

Exercise 2.12.4. Use the facts about outer measures from Section 2.12.1 and Exercise 2.12.3 to
prove that open sets and closed sets are measurable.

Exercise 2.12.5. Show that any continuous function f : Rn → R1 is Ln-measurable.
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Exercise 2.12.6. Suppose that each fi : Rn → R1 ∈ {fk}∞k=1 is Ln-measurable. Show that:

1. fk(x) =
∑k

i=1 fi(x) is Ln measurable for every k.

2. f(x) = supi fi(x) is Ln-measurable.

3. f(x) = infi fi(x) is Ln-measurable.

4. f(x) = lim supi fi(x) is Ln-measurable.

5. f(x) = lim infi fi(x) is Ln-measurable.

6. f(x) = limi fi(x) is Ln-measurable whenever this limit exists for Ln a.e. every x.

Exercise 2.12.7. Show that f(x) = supα∈A fα(x) need not be Ln-measurable even if each of the
fα if the index set A is not countable.

Exercise 2.12.8. Show that Ln is a Radon measure.

Exercise 2.12.9. (Approximation by step functions) Suppose that f : Rn → [0,∞]. For each

x ∈ Rn, define b(x) = 0.bx1b
x
2b
x
3 · · · bxnbxn+1 · · · where each bxi is either 0 or 1 and

∑m
i=1

bxi
i ≤ f(x) for

all m, with the additional constraint that if we flip any of the bxi ’s from 0 to 1, this inequality fails
for some m. Define Ei = {x such that bxi = 1}. Show that f =

∑∞
i=1 χEi , where χE(x) = 1ifx ∈ E

and χE(x) = 0ifx ∈ Ec. Hint: (1) to show that each of the Ei are measurable show that Ek =
{x | f(x) ≥ 1

k +
∑k−1

i=1 χEi} and (2) show that if f(x) is finite, then an infinite number of the bxi ’s
are 0. (See E&G Theorem 1.12 on page 19.)

2.12.3 Lebesgue integration

Lebesgue integration is built on top of Lebesgue measure through the use of simple functions. A
measurable function h : Rn → R1 is a simple function if h takes on only a countable number
of values: i.e. h(Rn) is countable. Let h(Rn) = {αi}∞i=1 and define Ei = h−1(αi). We have that
h(x) =

∑∞
i=1 αiχEi .

We will sometimes write functions, simple or otherwise as f = f+−f−, where f+ = max(f, 0)and
f− = −min(f, 0). For a positive simple function h, we define

∫
h(x) dx =

∑
i αiLn(Ei). (We

will use dx interchangeably with dLn.) If
∫
h+(x) dx < ∞ or

∫
h−(x) dx < ∞ we define∫

h(x) dx =
∫
h+(x) dx−

∫
h−(x) dx. Define∫

l
f(x) dx = sup

simple h,h≤f

(∫
h(x) dx

)
and ∫ u

f(x) dx = inf
simple h,h≥f

(∫
h(x) dx

)
.

If
∫ u

f(x) dx =
∫
l f(x) dx, then we say that f is integrable, even if the value is infinite. A function

f is summable if f is integrable and
∫
|f(x)| dx finite.

Exercise 2.12.10. Prove that every Ln-measurable function is integrable. (Remember, this just
means that

∫ u
f(x) dx =

∫
l f(x) dx, not that the common value is finite).
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Exercise 2.12.11. Suppose that we define I(f) =
∫
f(x) dx. Prove that: I(αf + βg) = αI(f) +

βI(g) for all α, β ∈ R1

Exercise 2.12.12. Let fλ(x) = f(x− λ). Prove that I(fλ) = I(f) for all λ ∈ R1.

Exercise 2.12.13. Suppose that J : F → R1 is a linear functional on measurable functions F ,
that satisfies:

1. J(αf + βg) = αJ(f) + βJ(g) for all α, β ∈ R1

2. J(fλ) = J(f) for all λ ∈ R1.

3. If 0 ≤ f ≤ g, J(f) ≤ J(g).

Prove that J(f) = cI(f) for some real constant c.

2.12.4 The three main theorems

We very often need to know the the limit of integrals of a sequence is the integral of the limit of
the sequence. We have three standard theorems.

1. (Fatou’s Lemma) ∫
lim inf
i→∞

fi dx ≤ lim inf
i→∞

∫
fi dx

2. (Monotone Convergence) Suppose that {fi} are all measurable and that 0 ≤ f1 ≤ ... ≤ fi ≤
fi+1 ≤ .... Then we have that

lim
i→∞

∫
fi dx =

∫
lim
i→∞

fi dx.

3. (Dominated Convergence Theorem) If fi → f µ a.e., |fi|, |f | < g and
∫
g dx <∞, then∫

|fi − f | dx→ 0 as i→∞.

Exercise 2.12.14. Read the proofs of the three theorems I have included in Appendix C. (These
notes are an excerpt from an incomplete draft of book I am writing.)

2.12.5 Lebesgue Measure is a special case of Hausdorff Measures

The family of outer measures we will most often use are Hausdorff Measures. Lebesgue measures
are in fact special cases of these more general measures. (Because the definitions are different, this
fact is a theorem that is not terribly easy to prove.) We will reiterate the Caratheodory construction
for this case and define the Hausdorff measures in a series of steps:

1. A cover of a set E is a family of sets F such that

E ⊂
⋃
Fi∈F

Fi
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2. We will say that a cover is a δ-cover is diam(F ) < δ for all F ∈ F .

3. We will denote the family of all δ-covers of E by Fδ(E) i.e.

Fδ(E) ≡ {All F such that E ⊂
⋃
Fi∈F

Fi and diam(Fi) < δ ∀Fi ∈ F}

4. Now we define the Hausdorff δ-measures:

Hsδ(E) ≡ inf
F∈Fδ(E)

∑
Fi∈F

α(s)
(diamFi)

s

2s

where α(s) is the volume of the s-dimensional unit ball, where we have used the Γ-function
to extend the definition in the case of nonintegral dimensions.

5. Finally, we can define the Hausdorff measures:

Hs(E) = lim
δ↓0
Hsδ(E)

Note that we get a different Hausdorff measure for each s ∈ [0,∞). Figure 2.2 illustrates the idea
of Hausdorff measure.

diam(E)

∑
i α(k)

(
diam(Ei)

2

)k

Figure 2.2: Visualizing the Hausdorff measure of a set: the actual computation for com-
plicated sets is often difficult. Finding a sequence of covers that provably get the defined
infimum with δ → 0 can be very challenging. And of course, the brute force computation is
impossible.

Exercise 2.12.15. Show that if the s-dimensional Hausdorff measure of E is greater than 0,
Hs(E) > 0, then Ht(E) = ∞ for all t < s. Show that Hs(E) = 0 implies that Ht(E) = 0 for all
t > s.

Exercise 2.12.16. Show that Hsδ(E) is a monotonically decreasing function of δ.

Exercise 2.12.17. Show that any countable set of points (in any Rn) has dimension equal to 0 by
showing that the dimension is less than β for any β > 0. The main point here is that this includes
countably infinite sets of points.
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2.12.6 Some Approximation

We define (E∆F ), the symmetric difference between two sets E and F , to be (E∆F ) ≡ (E ∩F c)∪
(F ∩ Ec).

Exercise 2.12.18. Prove that if E is measurable and Ln(E) < ∞, then for any ε > 0, there is
a finite union of closed rectangles, call this set Fε, such that Ln(E∆F ) < ε. Show that the same
thing holds if you use finite unions of open rectangles.

Exercise 2.12.19. Use Exercise 2.12.18 to show that for any characteristic function χE , where
E ⊂ Rn is measurable, we can find a positive continuous f εE : Rn → R1 such that

∫
|χE−f εE(x)| dx.

Exercise 2.12.20. Prove that in Exercise 2.12.19, you can require f εE ≤ χE .

Exercise 2.12.21. Use the previous exercises and the theorems in Section 2.12.4, to prove that
for f > 0 such that

∫
f dx < ∞, there exists a sequence of continuous functions fi such that∫

|f − fi| dx→ 0 as i→∞.

Exercise 2.12.22. Prove that there are bounded, Ln-measurable sets E ⊂ B(0, 1), such that if we
demand the finite union F in Exercise 2.12.18 contains E, then we cannot get a small difference
between E and F . More concretely, show that there is a set E with Ln(E), such that every finite
union of rectangles including E has measure exceeding Ln(B(0, 1)).

2.13 Mean value theorem f : R1 → R1

The mean value theorem says that if f : [a, b]→ R is differentiable everywhere, then there is point
c ∈ [a, b] such that f(b) = f(a) + f ′(c)(b− a). We will call a line y = L(x) = ax+ b a supporting
line of the graph of f : [a, b] → R1 if the graph of L and the graph of f have at least one point
strictly between a and b, in common, and the graph of f is everywhere above the graph of L or the
graph of f is everywhere below the graph of L. Stated differently, L is a supporting line of the
graph of f if (1) there is some point c ∈ (a, b) such that f(c) = L(c), and (2) either f(x) ≤ L(x)
for all x ∈ [a, b] or f(x) ≥ L(x) for all x ∈ [a, b].

Exercise 2.13.1. Prove that if f(a) = f(b), f is continuous on [a, b], and f is differentiable for all
x ∈ (a, b), there is a point c ∈ (a, b) such that f ′(c) = 0.

Exercise 2.13.2. Prove that if f is differentiable on (a, b) and continuous on [a, b], there is a point
c ∈ (a, b) such that f(b) = f(a) + f ′(c)(b− a).

Exercise 2.13.3. Prove that prove that f(a) = f(b), f is continuous on [a, b] then there is a
horizontal supporting L(x) = 0x+ b for the graph of f .

Exercise 2.13.4. Prove that if f is continuous on [a, b], then there is a point c ∈ (a, b) such that

either (1) f(x) ≤ f(b)−f(a)
b−a (x− c) + f(c) for all x ∈ [a, b] or (2) f(x) ≥ f(b)−f(a)

b−a (x− c) + f(c) for all
x ∈ [a, b]. I.e. there is a supporting line for the graph of f that intersects the graph at some point

between a and b and have slope equal to f(b)−f(a)
b−a .
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Exercise 2.13.5. Give an example of a function f : [a, b]→ R1 differentiable everywhere in (a, b),
that does not satisfy the mean value theorem.

Exercise 2.13.6. Consider the function f(x) = |x| on the interval [−1, 1]. What are the supporting
lines of the graph of f on that interval? If L is the family of all supporting lines, find the function
g(x) = supL∈LL(x).

Exercise 2.13.7. Suppose that f(x) is continuously differentiable, and we know that |f ′(y) −
f ′(x)| ≤ ε when |x − y| ≤ δ(ε). Find bounds |f(y) − f(x) − f ′(x)(y − x)| in terms of ε and δ(ε)
using the mean value theorem.

2.14 Mean value theorem in higher dimensions

In higher dimensions, we have the generalized mean value theorem, a simpler result that is
nevertheless useful: suppose γ : [a, b] → Rn is continuously differentiable everywhere. Then for
some c ∈ [a, b], we have

|γ(b)− γ(a)| ≤ |γ̇(c)| |b− a|.

A bit more generally, suppose that E is a 1-dimensional set in Rn and F : Rn → Rm is Lipschitz.
Then for some c ∈ E,

H1(F (E)) ≤ |DF (c)| H1(E).

The same statements hold if γ : [a, b] → B1 and F : B1 → B2. where B1 and B2 are finite or
infinite dimensional Banach spaces. In the next section we will see the area and co-area formulas
which have the generalized mean value theorems as simple corollaries

Exercise 2.14.1. Prove the first version of the generalized mean value theorem: |γ(b) − γ(a)| ≤
|γ̇(c)| |b− a| for differentiable γ.

Exercise 2.14.2. Assume the fact that when γ is Lipschitz
∫ b
a γ̇(t) dt = γ(b) − γ(a), to get the

generalized mean value theorem in the case that γ is merely Lipschitz.

Exercise 2.14.3. Can you find an example γ : [−1, 1] → R1 that is differentiable everywhere
on [−1, 1], and yet the graph of γ on [−1, 1] is infinitely long? In other words, defining the map
g : t → (t, γ(t)), we get that H1(g([−1, 1])) = ∞. Hint: prove that such a γ cannot have a
continuous derivative.

Exercise 2.14.4. Find an example of a function γ : [a, b] ⊂→ R3 such that there is no point
c ∈ [a, b] where γ(b) − γ(a) = γ̇(c)(b − a). Hint: find a curve whose tangents are never parallel to
γ(b)− γ(a).

Exercise 2.14.5. Find an example of a function γ : [a, b] ⊂ R1 → R2 such that there is no point
c ∈ [a, b] where γ(b) − γ(a) = γ̇(c)(b − a). Hint: the hint on the previous problem will not work
here.
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Exercise 2.14.6. (*) One can view the various mean value theorems as theorems that differ because
averages over connected point sets in R1 versus Rn, n > 1 are fundamentally the different. Prove
that a probability distribution on a connected set in R1 must has its mean value in that connected
set, but that there are examples in Rn, n > 1 where the mean value is not in the connected set.

Exercise 2.14.7. (*) Use Exercise 2.14.6 to explain the the usual mean value theorem versus
Exercise 2.14.5.

2.15 Lipschitz functions

Suppose that E ⊂ Rn. We define the distance function from x to E, d(x,E), by d(x,E) =
infy∈E |x−y|. A function f : Rn → Rm is Lipschitz with Lipschitz constant K if |f(x)−f(y)| ≤
K|x − y| for all x, y ∈ Rn and some fixed K < ∞. Define Lip(f) to be the smallest constant K
for which |f(x)− f(y)| ≤ K|x− y| for all x, y ∈ Rn is true.

It turns out that Lipschitz functions are the right class of functions to consider in geometric
analysis – many things that are true about smooth functions are true about Lipschitz functions,
but not functions with even less regularity. Rademacher’s Theorem tells us that Lipschitz
functions are differentiable almost everywhere. A set is Rectifiable if it is contained in at most
countably many images of Lipschitz maps. More precisely, E ⊂ Rn is said to be k-rectifiable if
E ⊂

{⋃
i fi(Rk)

}⋃
E0 where k ≤ n, Lip(fi) = Ki < ∞ for all i, and Hk(E0) = 0. These sets are

in some sense the most general, least regular sets on which one can do calculus.

Two very important theorems that work for rectifiable sets and Lipschitz mappings between
those sets are the area formula and the coarea formula. While the proofs of these formula are
quite involved (see Evans and Gariepy’s book [5] for the proofs), we can state the formulas after we
define the Jacobian of a matrix. Suppose that f : Rn → Rm and f is differentiable at x. Then the
Jacobian of f at x is Jf ≡

√
det(Df∗ ·Df) if m ≥ n or Jf ≡

√
det(Df ·Df∗) if m ≤ n, where

A∗ is the transpose of A.

If n ≤ m and f : Rn → Rm, we have the area formula:

∫
E
g(x)Jf(x) dx =

∫
f(E)

 ∑
x∈f−1(y)

g(x)

 dHny.

If m ≤ n and f : Rn → Rm, we have the coarea formula:∫
E
g(x)Jf(x) dx =

∫
f(E)

(∫
x∈E∩f−1(y)

g(x) dHn−mx

)
dHmy.

In the important case in which g(x) = 1, these reduce to:∫
E
Jf(x) dx =

∫
f(E)
H0(f−1(y))dHny.

and ∫
E
Jf(x) dx =

∫
f(E)
Hn−m(E ∩ f−1(y)) dHmy.
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Exercise 2.15.1. (*) Suppose that E is closed. Prove that |∇d(x,E)| = 1 for all x such that
d(x,E) > 0 and d(x,E) is differentiable. Hint: study the intersection of the closed ball of radius
d(x,E) and E.

Exercise 2.15.2. Let (W )o be the interior of the set W . Use Exercise 2.15.1 and Rademacher’s
Theorem to show that if F ⊂ (Ec)o ⊂ Rn then Hn(F ) =

∫∞
0 H

n−1(d−1
E (r)) dr

Exercise 2.15.3. Use the area formula to prove that if E ⊂ R1, Lip(f) = K where f : R1 → R1,
and the graph of f over E is G ≡ {(x, y) ∈ R2|x ∈ E, y = f(x)}, then H1(E) ≤ H1(G) ≤
(
√

1 +K2)H1(E)

Exercise 2.15.4. Suppose that f : R1 → R1, Lip(f) = K and the graph of f over E is G ≡
{(x, y) ∈ R2|x ∈ E, y = f(x)}. Define CK(x0,y0) to be the set {(x, y) ∈ R2|| y−y0x−x0 | ≤ K}.

Exercise 2.15.5. Suppose that f : R1 → R1, Lip(f) = K and the graph of f over E is G ≡
{(x, y) ∈ R2|x ∈ E, y = f(x)}. Prove that G is a rectifiable set.

Exercise 2.15.6. (*) Prove that if G ⊂ Rn is k-rectifiable, k < n, then G ⊂
⋃
iGi

⋃
G0, where

the Gi are graphs of Lipschitz fi : Rk → Rn−k.

Exercise 2.15.7. Suppose that E ⊂ R1, f : E → R1 and for all x, y ∈ E, f(x)− f(y) ≤ K|x− y|.
for any z ∈ E, Let pz(x) ≡ f(z) + |x− z|. Define g : R1 → R1 by g(x) = infz∈E pz(x). Prove that
G is Lipschitz, Lip(G) = Lip(f), and g(x) = f(x) when x ∈ E.

Exercise 2.15.8. Draw pictures illustrating the proof in Exercise 2.15.7.

Exercise 2.15.9. (*) Suppose that f : R1 → R1 is continuous and differentiable on R1 \ S, with
S being a countable set, on which the function can fail to be continuous or differentiable. Prove
that graph of f , G ≡ {(x, y) ∈ R2|x ∈ E, y = f(x)}, is rectifiable. While this seems at first to be
wrong, because f can be non-Lipschitz, we are not saying that there is one mapping f1 : R1 → R2

such that G ⊂ f1(R1).

Exercise 2.15.10. A function is called bi-Lipschitz if k|x − y| ≤ |f(x) − f(y)| ≤ K|x − y| with
0 < k ≤ K < ∞. Note that this means f is invertible. (Why?) Prove that this means that either

(1) the graph of G is contained in every cone C+,k,K
(z,f(z)) ≡ {(x, y) ∈ R2|k ≤ y−f(z)

x−z ≤ K} or (2) the

graph of G is contained in every cone C−,k,K(z,f(z)) ≡ {(x, y) ∈ R2| −K ≤ y−f(z)
x−z ≤ −k}

Exercise 2.15.11. Prove that if f if Lipschitz and Lip(f) = K, then g(x) ≡ f(x) + (K + 1)x is
bi-Lipschitz. Can you draw a picture (or 2 or 3) that proves this?

Exercise 2.15.12. Prove that if f is Lipschitz with Lip(f) = K, then fm(x) = f
1
◦ f

2
◦ · · · ◦ f

m
(x)

is Lipschitz with Lip(fk(x)) ≤ Km.
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Exercise 2.15.13. Find an example of a function f : R1 → R1, with Lip(f) = K, such that
Lip(f2) < K2.

Exercise 2.15.14. (*) Suppose that f : Rn → Rn and Lip(f) = K. Prove that Jf ≤ Kn. Hint:
think about the singular value decomposition (SVD) of the matrix Df .

Exercise 2.15.15. Find an example of f : Rn → Rn and Lip(f) = K such that Jf = Kn.

Exercise 2.15.16. (*) We will say that f : Rn → R1 is locally convex at x if there is a
neighborhood of x, Ux, such that f |Ux is convex (I.e f restricted to a domain of Ux is convex.) The
definition of local concave is completely analogous. Create a Lipschitz function f : R1 → R1

which is not locally convex or concave at any point in R1. Hint: start with the sawtooth function
and work with scaled and dilated versions of that function. (Sawtooth function: f(x) = x from
x = 0 to x = 1 and f(x) = −x + 2 from x = 1 to x = 2, now repeat periodically to define f on
R \ [0, 2])

Exercise 2.15.17. Prove that a convex function f : R1 → R1 is Lipschitz on any compact set.
Hint: (1) for all x, f(x) <∞ and (2) f convex implies f ′(x) is nondecreasing.

Exercise 2.15.18. Prove that if f ∈ C1(R,R), then f is Lipschitz on any compact subset of R.
(Recall that Ck(Rn,Rm) is the set of all functions from Rn to Rm which whose first k derivatives
exist and are continuous on Rn. When k = 0, this simply means that the function is continuous.
Often we write C(Rn,Rm) instead of C0(Rn,Rm).

Exercise 2.15.19. Suppose that f ∈ C(R,R). Define F (x) =
∫ x

0 f(t) dt. Prove that F is Lipschitz
on any compact subset of R.

Exercise 2.15.20. Study Exercise 2.7.23 to see that the function constructed in the Chapter 6,
in my solution to Exercise 2.7.23, is in fact Lipschitz, so that even though Lipschitz functions are
differentiable almost everywhere, the derivative can be discontinuous on all but a set of measure ε.

2.16 When does the fundamental theorem of calculus

apply?

In calculus we first learn that F (x) =
∫ x
a f(t) dt if and only if F ′(x) = f(x). Of course there are

conditions f or F must satisfy. That is the point of this section: how generally does this theorem
hold? When is F (x) =

∫ x
a F (t) dt+ F (a) a true statement? How wild can F be?

It is not difficult to show that if f : R1 → R1 is continuous, then F ′(x) = f(x) for all x. In fact,
that is one of the exercises below. What about the case in which f has a finite number of jump
discontinuities? Does F ′(x) = f(x) all most everywhere, or to reverse the question, suppose that
G is differentiable almost everywhere. In which cases is it true that G(x) =

∫ x
a G

′(t) dt+G(a) for
all x?
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f(x) is said to be absolutely continuous if, for any ε > 0 there is δ such that if
∑n

i=1(bi−ai) ≤
δ, then

∑n
i=1 |f(bi)− f(ai)| < ε where the intervals (ai, bi) are disjoint. It is a theorem in analysis

that if f is absolutely continuous, then f(x) = f(a)+
∫ x
a f
′(t) dt for all x. See for example Folland’s

text [7].
In the vector calculus section, we mentioned that the vector calculus theorems were all special

cases of the general Stokes theorem involving differential forms, which we do not cover here. We
also mentioned in one of the problems that the vector calculus theorems were generalizations of
the fundamental theorem of calculus. But the problem with higher dimensional analogs of the
fundamental theorem of calculus is that the boundary of a region we integrate the derivative
over in higher dimensions does not correspond to a point in the space, but rather a codimension 1
subset. So that integral cannot correspond to a function evaluation, but rather the integral of the
function over a codimension 1 set. See Exercise 2.16.3 to explore this a little bit more.

Exercise 2.16.1. Prove that if f is continuous, then F (x) =
∫ x
a f(t) dt if and only if F ′(x) = f(x).

Exercise 2.16.2. Prove that if f : R1 → R1 is Lebesgue integrable, then
∫
f(t)dt is absolutely

continuous. Hint: define gn = min{|f |, n}. Consider
∫
R gn(t) + (|f |(t) − gn(t)) dt. Define Nε so

that n > Nε implies
∫
R |f |(t)− gn(t)) dt ≤ ε

2 .

Exercise 2.16.3. In order to recover the value of a function through integrals over a sufficiently
rich set of codimension 1 sets, we need the help of an area of study called integral geometry.
The Radon Transform is the most famous tool in that area. Look up an exposition of this
transform and read the proof that you can reconstruct a function from integrals of the function.
I recommend either Bracewell [1] or Kak and Slaney [8].

2.17 Fubini’s Theorem

While it is not that simple to prove, the equivalence of (1) iterated integrals over orthogonal
subspaces and (2) the integral over higher-dimensional product space is used as soon as students
begin computing higher dimensional integrals. One soon finds out that switching the order of
integration can sometimes be a bit tricky due to limits integration depending in non-trivial ways
on the shape of the region being integrated over. The theorem that allows us to switch order is
Fubini’s Theorem.

Informally, it says that∫
~x∈R3

f(x1, x2, x3)d~x =

∫
x3∈R

(∫
x2∈R

(∫
x1∈R

f(x1, x2, x3)dx1

)
dx2

)
dx3

with the real challenge coming when we want to do this:∫
~x∈Ω⊂R3

f(x1, x2, x3)d~x =

∫
x3∈Px2 (Px1 (Ω))

(∫
x2∈Px1 (Ω)∩l(x3)

(∫
x1∈Ω∩l(x2,x3)

f(x1, x2, x3)dx1

)
dx2

)
dx3

where py(E) is the projection of the set E onto the space orthogonal to the direction of y, and
x ∈ l(y∗, z∗) is the set {(x, y, z)|y = y∗ and z = z∗}.

The more precise statement is concerned with the fact that, for example, just because f : R2 →
R1 is L2 measurable does not imply that, for example, the functions x→ f(x, 3) or x→ f(x, 17) or
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y → f(6.3, y) or y → f(5, y) are L1 measurable. Thus, we have to know that these slice functions
are measurable almost all the time in order for the theorem to make sense. For the details see
Chapter 1 of Evans and Gariepy’s book [5]. In the following exercises we explore both Fubini and
volume computation problems in general.

Exercise 2.17.1. Define Ω to be the intersection of the positive octant in R3 and the {x|x·(1, 1, 1) ≤
1}. Write

∫
Ω 1d~x as an iterated integral and compute it.

Exercise 2.17.2. Look up the precise statement of the theorem in Evans and Gariepy’s book [5].

Exercise 2.17.3. How is Fubini’s theorem a special case of the coarea formula?

Exercise 2.17.4. Let E be the region in R2 bounded by the x2 axis, the line x2 = 1, and the line
x2 = x1. Evaluate

∫
E x

2
1d~x (1) by integrating first over x1 and then over x2 and (2) by integrating

first over x2 and then over x1.

Exercise 2.17.5. Let E be the region in R2 bounded by

1. {(x1, x2) | 0 ≤ x1 ≤ .35, x2 = 1},

2. {(x1, x2) | π/2 ≤ x1 ≤ π/2 + .35, x2 = 0},

3. {(x1, x2) | 0 ≤ x1 ≤ π/2, x2 = cos(x1)}, and

4. {(x1, x2) | .35 ≤ x1 ≤ π/2 + .35, x2 = cos(x1 − .35)}.

Evaluate
∫
E 1d~x.

Exercise 2.17.6. Let E be the region in R2 bounded by

1. {(x1, x2) | 0 ≤ x1 ≤ .35, x2 = 1},

2. {(x1, x2) | π/2 ≤ x1 ≤ π/2 + .35, x2 = 0},

3. {(x1, x2) | 0 ≤ x1 ≤ π/2, x2 = cos(x1)}, and

4. {(x1, x2) | .35 ≤ x1 ≤ π/2 + .35, x2 = cos(x1 − .35)}.

Evaluate
∫
E(x1 − arccos(x2))2d~x.

Exercise 2.17.7. Define the symmetric difference between two sets E and F to be the points
that are in one set but not then other: E∆F ≡ (E ∩ F c) ∪ (F ∩ Ec). Let

1. E1 = {(x1, x2) | x2
1 + x2

2 ≤ 1, |x1| ≤ .2}

2. E2 = {(x1, x2) | x2
1 + (x2 − 0.1)2 ≤ 1, |x1| ≤ .2}

Evaluate
∫
E1∆E2

1d~x.



54 CHAPTER 2. ANALYSIS

Exercise 2.17.8. Prove, using the area formula, that the area of the graph of the function
xn+1 = f(x1, ..., xn) over the set E ⊂ Rn equals

∫
E

√
(1 +∇f · ∇f) d~x. Hint: use the fact

that at any point in the domain, we can choose coordinates x̃i, i = 1, ..., n, which are rota-
tions of the initial coordinates, such that ∇f = ( ∂f∂x̃1 , ...,

∂f
∂x̃n

) = (0, ..., 0, ∂f∂x̃n ). This makes the

computation of
√

det(DF t ◦DF ) much easier. Here we are using F to denote the mapping
F : (x1, ..., xn)→ (x1, ..., xn, f(x1, ..., xn)).

Exercise 2.17.9. Define a pyramid P to be any set in Rn+1 such that, possibly after a rotation of
the coordinate system and a translation of the set, there is a point v = (0, ..., 0, xn+1), xn+1 = h > 0
and a set E ⊂ {x1, ..., xn+1 | xn+1 = 0} so that

P = {x1, ..., xn+1 | (x1, ..., xn+1) = λe+ (1− λ)v for some e ∈ E and some 0 ≤ λ ≤ 1}.

Now:

1. Prove that n-dimensional volume of {xn+1 = r} ∩ P equals (h−rh )n times the n-dimensional
volume of E.

2. Use this to show that that the n+1-volume of the pyramid is 1
n+1hL

n(E).

Hint: after proving the first fact about n-dimensional volume of slices, use the coarea formula and
the mapping g : Rn+1 → R1, given by g(x) = xn+1.

Exercise 2.17.10. Use the method used in Exercise 2.17.9 to get a very similar result for spherical
pyramids – intersections of n + 1-dimensional balls of radius h centered at the origin, with cones
also centered at the origin.

Exercise 2.17.11. Assume that f ∈ C2(R1,R1). Use a Riemann integral approach, with the help
of a Talyor series argument, to show that the length of the graph of f from x = a to x = b is∫ b
a

√
(1 + f ′(x)2) dx.

Exercise 2.17.12. Define E to be the region bounded by (1) the plane passing through (1, 0, 0),
(0, 3, 0), and (0, 0, 10), (2) the x1 = 0 plane, (3) the x2 = 0 plane, and (4) the x3 = 0 plane.
Compute

∫
E x3 d~x in several different ways using the iterated integrals Fubini enables you to use.

Which order if iteration is easiest? Hint: think about Exercise 2.17.9.

2.18 Miscellaneous calculus facts

When does d
dx

∑∞
i=1 fi(x) =

∑∞
i=1

dfi(x)
dx ? In other words, when can commute summation and

differentiation? This is a simple question that comes up often enough when we begin working
with power series. A related question asks when differentiation commutes with integration:
When is it true that d

dt

∫
f(x, t) dx =

∫
∂
∂tf(x, t) dx?

When we want to find the limit limx→x0
g(x)
f(x) and either limx→x0 g(x) = limx→x0 f(x) = 0, we

can use L’Hospital’s rule and differentiate top and bottom and again attempt to take the limit.
We can keep repeating this as often as we like.
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There is a technique that also arises fairly frequently, that lets us solve constrained optimization
problems. When we are trying to minimize f(x) subject to the constraint that g(x) = c, then we
can use Lagrange multipliers to accomplish that. While the full theory is quite involved, in
the case in which f and g are smooth, we look for x such that ∇f(x) = λ∇g(x) for some real λ.
Geometrically, this corresponds to finding the x’s where the level sets of f and g meet tangentially.

There are also some odds and ends here concerning the convergence or divergence of series and
integrals, but these are mostly prompts to open up R. P. Burn’s book and check out the parts on
convergence and divergence.

The following exercises explore these questions.

Exercise 2.18.1. Assume that f and ∂
∂tf(x, t) exist for all x and t. and Prove that d

dt

∫
f(x, t) dx =∫

∂
∂tf(x, t) dx. Hint:

1. Assume that there is a g(x) > 0 such that
∫
g dx <∞, | ∂∂tf(x, t)| ≤ g(x), and hi ↓ 0.

2. Use the dominated convergence theorem and the mean value theorem to prove that

1

hi

(∫
f(x, t+ hi) dx−

∫
f(x, t) dx

)
=

∫
f(x, t+ hi)− f(x, t)

hi
dx

converges to ∫
∂

∂t
f(x, t) dx

as i→∞.

3. Do the same for the case in which hi ↑ 0

Exercise 2.18.2. Use Exercise 2.18.1 to show that we can switch summation and differentiation:
d
dt

∑∞
i=1 fi(t) =

∑∞
i=1

dfi(t)
dt Hint: Note that summation over i can be turned into integration over x

by defining F (x, t) =
∑

i χ[i−1,1)(x)fi(t) where χE(x) = 1 if x ∈ E and 0 otherwise.

Exercise 2.18.3. Construct an example of an f(x, t) such that d
dt

∫
f(x, t) dx 6=

∫
∂
∂tf(x, t) dx.

Exercise 2.18.4. Construct an example in which d
dt

∑∞
i=1 fi(t) 6=

∑∞
i=1

dfi(t)
dt . Hint:

1. Define fi(t) = 0 when t ∈ [0, 1− 1
2i−1 ] and 1 when t ∈ [1− 1

2i
, 1− 1

2i+2 ], to smoothly go from

0 to 1 when x goes from 1 − 1
2i−1 to 1 − 1

2i
and to smoothly go from 1 to 0 when x goes

from 1 − 1
2i+2 to 1 − 1

2i+3 . Following the idea suggested for solving Exercise 2.18.2, define
F (x, t) =

∑
i χ[i−1,1)(x)fi(t) where χE(x) = 1 if x ∈ E and 0 otherwise.

2. Prove that
∑

i fi(1) = 0 and
∑

i
dfi
dt (1) = 0.

3. Prove that
∑

i fi(t) ≥ 1 for t ∈ [1
2 , 0). Use this to prove that d

dt

∑∞
i=1 fi(t) does not exist.

4. Conclude that d
dt

∑∞
i=1 fi(t) 6=

∑∞
i=1

dfi(t)
dt

Exercise 2.18.5. Work through chapters 5 and 12 of R.P. Burn’s book.
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Exercise 2.18.6. Assume that f : Rn → R1 and g : Rn → R1. Prove that if ∇f is not parallel
with ∇g at some point x̂ ∈ Lg(c) ≡ {x | g(x) = c}, then there are directions in which you can move
from x̂, staying in Lg(c), such that f(x) increases and directions in which f(x) deceases.

Exercise 2.18.7. Use Theorem 2.7.1 to explain why L’Hospital’s method for finding the limit
limx→x0

f(x)
g(x) works when limx→x0 f(x) = limx→x0 g(x) = 0. You can assume that both f and g

have k derivatives where at least one of f and g have a non-zero kth derivative at x0.

A few more, for good measure, to round out the analysis chapter.

Exercise 2.18.8. Construct a function f : R1 → R1 which is universal in the following sense: for
any continuous g : [0, 1]→ R and any ε > 0, there is a triple (α(ε, g), β(ε, g), xε,g) ∈ R3 such that

sup
x∈[0,1]

(β(ε, g)f(α(ε, g)(x+ xε,g))− g(x)) ≤ ε

. In other words a blowup of the function f somewhere in its domain is arbitrarily close to g on
[0, 1].

Exercise 2.18.9. Construct a function f : R1 → R1 which is universal in the following sense: for
continuous any g : [0, 1]→ R, any ε > 0 and any x0, there is a quadruple (α(ε, g), β(ε, g), γ(ε, g), xε,g) ∈
R4 such that

sup
x∈[0,1]

(β(ε, g)(f(α(ε, g)(x+ xε,g + x0))− γ(ε, g))− g(x)) ≤ ε

and xε,g < ε. In other words a blowup of the function arbitrarily near x0 is arbitrarily close to g
on [0, 1].

2.19 Philosophical Comments

Beginning analysis is often taught as though it were just calculus plus ε’s and δ’s, with very few
real surprises. This is unfortunate and unnecessary. Because these notes are intended as a review
for the graduate qualifying exam at WSU, I have not emphasized the rich diversity that you can
encounter if you move off the well beaten paths. But the study of sets, functions and measures is
a huge, infinitely rich subject full of diverse surprise and wonder. Deep discipline, combined with
intuitive, even wild, creative expeditions, opens to us an enormous wilderness filled with unexpected
discoveries and beauty.

2.19.1 First Course in Analysis: Unabridged

Here is a syllabus for what I consider to be an ideal, if intense, first, year long course in analysis.
Such a course should be preceded by a rigorous one semester course in proofs, focusing on topics
from metric spaces and on inequalities.

Metric Spaces and inequalities metric spaces; lots of examples; metric spaces that are also vec-
tor spaces: normed linear spaces; topology-continuity-compactness-connectedness-convergence-
etc; Inequalities :Cauchy-Schwarz, Holder, Jensen’s, am-gm, etc;
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Essentials of integration I Outer measures; measurable functions; two theorems and a Lemma;
Fubini

Differentiation I Derivatives as linear approximations; derivatives in infinite dimensions; Differ-
entiable vs C1 vs C1,1; Taylor’s Series and the slight improvement on the remainders following
Smith; Mean Value Theorems

Integration (and Differentiation) II weak derivatives; densities; Lebesgue differentiation; cov-
ering theorems; Hausdorff Measures; Properties of Hausdorff measures;

Properties of differentiable functions Inverse function theorem; implicit function theorem;
Manifolds; Constant Rank theorem; Sard’s Theorem; Area and Coarea formulas I; Almgren
and Lieb’s “counterexample”;

Convex Sets and Functions Properties; Jensen’s inequality and supporting hyperplanes; con-
vex optimization; Subdifferentials and subgradients; Legendre-Fenchel Duality; Tube formu-
las

Lipschitz Functions: almost differentiable functions (and rectifiable sets) Rademacher; Ex-
tensions; Approximation;

Beyond Lipschitz: BV functions Derivatives that are measures; Sets of finite perimeter; Back
to Rectifiable sets

Properties of Lipschitz functions and rectifiable sets Area and Coarea formulas II; Diver-
gence Theorem on sets with finite perimeter; C1 approximation; Crofton’s formula; Struc-
ture/regularity theorems for rectifiable sets;

Lipschitz Functions in high dimensions Balls and Spheres in high dimensions; Concentration
of measure – geometric and analytic; Johnson Lindenstrauss; Lipschitz functions on Spheres
in high dimensions;

Probability, data and classes of sets and functions learning sets and functions from data;
classification; regression; PAC learning; VC Theory: using data to slice function families
differently; Theory of Types; Sanov’s Theorem; Kullback-liebler;

2.19.2 First Course in Analysis: Abridged

A minimalist introduction to analysis, that one can teach to motivated students with little back-
ground would move less quickly and require less time than the course outlined above. Here is a
syllabus for that class.

Part 1: Metric spaces and inequalities Metric spaces and the usual ideas of continuity, com-
pactness, connectedness, topology, etc; normed spaces and inner product spaces; Cauchy
Schwarz and Holder and Lp spaces; Pseudo-distances, Kullback-Liebler and theory of types;

Part 2: Measure Theory and Integration I Outer measures and Caratheodory’s Criterion;
Properties of measures; 5r-covering theorem; Riemann vs Lebesgue integration; Markov in-
equality; two theorems and a Lemma;
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Part 3: Differentiation Derivatives as linear approximations; derivatives in infinite dimensions:
the Laplacian from gradient descent of f(u) =

∫
|∇u|2dx; the product rule and weak deriva-

tives; tangent places, tangent cones, and measure theoretic tangent planes; Taylor series and
Smiths better result; Mean value Theorems;

Part 4: Properties of differentiable functions inverse function theorem and the implicit func-
tion theorem; Sard’s theorem; understanding and using the area and coarea formulas; La-
grange Multipliers: the reason they work; Tube formulas;

Part 5: Measure Theory and Integration II Hausdorff Measures; Fractals and Cantor Sets
and the Cantor function; densities; Lebesgue Differentiation Theorem; Radon-Nikodym de-
composition; Extra credit: Besicovitch Covering theorem;

Part 6: Convex, Lipschitz, and BV functions ... and Rectifiable Sets Convex functions;
subdifferentials and subgradients; Lipschitz Functions and Rademacher; Area and Coarea
still work; Beyond Lipschitz: BV functions; Sets of finite perimeter; Rectifiable sets: intro
and inspirational tour;

2.19.3 Supporting Context

There are ideas and tools that should be in the toolbox of anyone in analysis. Of course, there
is a wide variety of backgrounds that analysts bring to their work. And I do not believe the
“scholarly” approach is the best one: know everything about an area before you do work there.
In fact, I favor cultivation of the “ignorant” but energetic/creative approach: dive in and work on
a problem, learning what you need as you go along. On the other hand, their are tools that are
useful to learn. The benefit from that effort is two fold: (1) the tools themselves are useful in new
mathematical exploration and (2) the process of learning the tools helps you learn to create your
own tools. Another source of inspiration is bare-handed work on real, data-driven problems and
applications. In this work you are confronted with genuinely fresh thoughts and ideas, a fact that
is unfortunately usually overlooked or at least rarely emphasized. for this reason, I promote the
idea that a mathematician, to be versatile, original, freshly creative, must work on both pure and
applied problems.

Here is my own (somewhat idiosyncratic) list of core, supporting and applied subjects that
facilitate work in pure and applied analysis:

Real and Variational analysis, Geometric Measure Theory Analysis/geometry of sets, func-
tions and measures in Rn (and in metric spaces); Forms, currents and varifolds; analysis on
rectifiable sets; fractals and exotic sets and functions; analysis on and in non-smooth sets,
functions, spaces; Regularity and structure of variational minimizers;

Differential <whatever> smooth and Riemannian manifolds, connections and curvature, differ-
ential forms and calculus/analysis on manifolds, intersections and transversality; fixed point
theory, degree theory and other pieces of nonlinear functional analysis; dynamical systems:
qualitative theory and numerics; partial differential equations;

Harmonic Analysis Singular integrals, harmonic measures, representations of all sorts, etc. This
is something that is missing from the above courses, for the most part, and is really a core
piece of analysis/geometric analysis. Also included here would be essential pieces of complex
analysis. Applied Harmonic analysis, with its diversity of Fourier-like representations lives
here as well.
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Random, Stochastic things... Uncertainty propagation, ergodic theory, SODEs, SPDEs, Markov
processes, random walks, PAC learning, classification/regression/prediction, noisy inverse
problems, entropy and information, information geometry, type classes, coding and channels
...

Bits and Pieces Bits of algebraic topology; essential ideas and tools from numerical analysis/linear
algebra; ideas from graphs and combinatorics: how to count with cleverness; maybe even a
bit from algebraic geometry; key tools and ideas from optimization; algorithms;

Learning from Data Statistical learning Theory: VC theory, SVM’s, Neural Nets, graph learn-
ing methods, PAC learning; Inverse Problems: image denoising, image segmentation, signal
reconstruction, compressed sensing; regularization and priors; data based modeling of natural
phenomena;
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Chapter 3

Linear Algebra

This chapter focuses on the mathematics of linear transformations, mostly from Rn to Rm, though
we touch on the case of linear transformations in infinite dimensions. The ideas here are actually
fundamental to understanding analysis since they are really about the nuts and bolts of linear
functions between normed spaces, and that is precisely what derivatives are.

I may expand this later to a chapter more like Chapter 2, but at this point in time, this is a
very short chapter with only a list of topics and a bit of explanation. If you simply read other
books in order to understand the topics named in the section and subsection titles, you will know
enough for most purposes (in beginning analysis).

Here is the brief outline of topics whose mastery will enable you to have a solid, working grasp
of linear spaces and subspaces, linear transformations, and the properties of matrices that represent
transformations and subspaces:

Vector spaces

1. Linear Independence and Vector Space bases. Linear Independence of {vi}ni=1

means that linear combinations of the vi’s,
∑n

i=1 αivi are not zero unless αi = 0’s for
all i. A basis H = {hi}ni=1 is a set of linear independent vectors such that every vector
in v ∈ V can be written as a linear combination of elements of H: v =

∑n
i=1 βihi.

2. Subspaces and Affine subspaces. Subspaces include 0, affine subspaces need not
include 0. (Therefore a subspace is an affine subspace, but not vice versa.)

3. Examples. A rich diversity: Rn, spaces of polynomials, sequence spaces, other function
spaces.

Norms

1. In Rn. Norms map vector to the nonnegtive real numbers: || · || : V → R+ ∪ {0},
satisfying ||αv|| = |α|||v||, ||v+w|| ≤ ||v||+ ||w||. Important examples: 1-norm, 2-norm,
∞-norm, p-norm

2. In functions spaces. We have the same important examples in function spaces: 1-
norm, 2-norm, ∞-norm, p-norm

Linear operators; affine operators

1. Operator norm. The definition: supx 6=0
|L(x)|
|x|
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2. Reduced echelon form and what is tells you about a matrix. You can directly
read off what the null space is and therefore the dimension of the null space, which also
gives you the dimension of the range. The reduced echelon form also tells you what
columns can be used to span the range of A, so we can read off a parameterization of
the range of A.

3. Null space and level sets. Suppose that NA is the null space of A. If A : Rn → Rm
and y ∈ Rm, then if x ∈ Rn satisfies A(x) = y, then Ly = x+NA is the set of all points
in Rn that map to y.

4. Span of a set of vectors. We denote the set of all linear combinations of the columns
of A, i.e. the span of the columns of A, by span(A).

5. Determinants. Let E ⊂ Rn and FA : Rn → Rn be a linear map represented by a
matrix A. The determinant of a matrix is the volume dilation factor: vol(FA(E)) =
|det(A)|vol(E). The sign of det(A) tells you if the orientation of FA(E) has switched or
has stayed the same as the orientation of E.

Inner products and Orthogonality

1. Orthogonality. When we have an inner product 〈x, y〉, we say x is orthogonal to
y when 〈x, y〉 = 0. This is sometimes denoted x ⊥ y. If all the columns of O are
orthogonal to each other and they each have norm equal to 1, we say that O is an
orthogonal matrix and the columns are orthonormal. Then OOt = OtO = I, the n× n
identity matrix with 1’s down the diagonal and zeros everywhere else.

2. Projections. let P be a matrix with m orthonormal n-dimensional columns. Let P⊥

be the matrix of n−m orthonormal columns each of which is orthogonal to the columns
of P . Then MP = PP t is the operator which projects Rn onto the span of the columns
of P and if x is in span(P ) then MP (x) = x, otherwise, we can decompose x = xP +xP⊥
where xP = MP (x) and xP⊥ = MP⊥ . This decomposition into an element in P and an
element in P⊥ is unique.

3. Nilpotent operators. N is nilpotent if Np = 0 for some p > 1.

4. QR decomposition. Relation to Gram Schmidt orthogonalization: they are basically
the same thing. Suppose A is a matrix of m, n-dimensional vectors. Then A = QR,
where Qis upper triangular and Q has orthonormal columns. Thus, span(A) = span(R).

5. Convex functions and supporting hyperplanes. Convex functions are to opti-
mization what linear systems of equations are to differential equations: the “easy” case
(which is not so easy all the time). A closed convex subset E ⊂ Rn equals the intersec-
tion of closed half spaces containing E. If x ∈ Ec and E is convex, then there exists a
v ∈ Rn such that 〈y−x, v〉 < 0 for all y ∈ E. If E is closed and x ∈ Ec, there there is a
closest point in E x∗, such that operatornamedis(x,E) = ||x∗ − x|| > 0. We have that
if we define v = x− x∗, 〈y − x∗, v〉 ≤ 0 for all y ∈ E.

Symmetric operators; normal operators

1. Eigenvectors and eigenvalues. (A− λI)v = 0 → v is an eigenvector corresponding
to the eigenvalue λ. Eigenvectors can be complex numbers.

2. Diagonalization. A is diagonalizable if there is an invertible matrix Q such that
A = QDQ−1 where D is a diagonal matrix. Some matrices are diagonalizable if and
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only if we allow Q and D to be complex. If A = At, where At is the transpose of A,
then Q can be taken to be an orthogonal matrix: Q−1 = Qt

3. Jordan Normal Form Generalization of diagonalization that works or all square
matrices: allowing complex values, we are able to get that any square matrix A can
be decomposed – A = Q−1JQ where the J is an upper triangular matrix with the
eigenvalues of A appearing on the diagonal of J .

4. Relation to operator norm. The Jordan normal form tells us that the determinant
of A equals the product of the eigenvalues of A.

Singular value decomposition (SVD)

1. All matrices have an SVD. It is not necessarily unique, but non-uniqueness harmless

2. Relation to operator norm. If ||A|| denotes the operator norm of A, then ||A|| =
supi σi.

3. Relation to the determinant. Πn
i=1σi = |det(A)| – when determinant is defined.

When A not square, Πn
i=1 is the correct Extension of the determinant since it measure

the expansion or contraction of the subspace normal to the null space of A.

4. How it illuminates the geometry. Either: {rotation/reflection → orthogonal pro-
jection→ dilation along coordinate axes→ rotation/reflection}Or: {rotation/reflection
→ dilation along coordinate axes → embedding in higher dimensional space → rota-
tion/reflection}

What is different about infinite dimensions?

1. Hamel Bases versus Schauder Bases. finite combinations get everything versus
infinite sums of a countable basis gets everything. (These exist if and only if the space
is separable.)

2. Subspaces need not be closed. For example, take any Schauder basis S ≡ {si}∞i=1

and consider all finite linear combinations of elements of S. The result is a subspace
but it is not closed.

3. All norms are not equivalent. For example: the 1-norm of the function 1√
x

on the

unit interval is finite but the 2-norm is infinite.

4. The unit ball is not compact. Using the topology induced by the norm, the unit
ball is not compact.

5. Not all linear operators are continuous. bounded = continuous.

6. The spectrum is complicated. There are multiple ways that A− λI can fail to be
non-invertible. Each way generates different types of elements of the spectrum.

7. Proving the spectral theorem. Proving the spectral theorem for normal operators
in Banach spaces is very involved. Proof of this statement: See Conway’s book [3] on
functional analysis and his proof of the spectral theorem for normal operators. For
example, it involves measures on the complex plane which take values in the space of
projection operators.

8. Hilbert spaces are easier than Banach spaces. Having an inner product and a
notion of orthogonality makes many things easier/possible.
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9. Continuous, self-adjoint operators on Hilbert spaces are nice. ... things are
fairly similar to finite dimensions

10. Recommendation. Read through Chapters 1 and 2 of Cheney’s book [2], mentioned
below in the “Further Reading” Chapter, to get a sense for the main results in infinite
dimensional linear theory.



Chapter 4

Further Reading

Here are some recommendations for further reading. This Chapter will grow from time to time.

1. A good book with a pretty good view of what is essential in functional analysis for some-
body who is not specifically doing research in functional analysis, is Ward Cheney’s Analysis
for Applied Mathematics [2], and that is the case even if you are not really doing applied
mathematics, but merely applying functional analysis to geometric analysis.

2. My favorite first book in graduate analysis is Evans and Gariepy’s Measure Theory and Fine
Properties of Functions [5]. It is appropriate for those that have had a good undergraduate
course out of Fleming’s Functions of Several Variables [6].

3. In addition to Evans and Gariepy, one should always have Folland’s Real Analysis: Modern
Techniques and their Applications [7] on hand as a reference.

4. George F. Simmons Introduction to Topology and Modern Analysis [10] is a favorite of mine
and is extremely well written. Every young mathematician should own a copy.

5. Another favorite analysis references of mine are the appendices of Evans’ PDE book [4].
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Chapter 5

More Problems

Here I collect problems I have made up and those that I have found other places, like Yunfeng Hu’s
large collection of problems. This chapter will grow! Note that there are repetitions of exercises in
the previous chapters. If you have already solved the problem, you can of course skip it, but you
could also try to find a different proof of the same fact, or modify the problem in some way and
solve that modification.

5.1 More Analysis Problems

5.1.1 lp spaces

Note: I say that {ai} is monotonically decreasing when ai ≥ ai+1 for i = 1, 2, ...; Nonincreasing is
another, equivalent term.

Exercise 5.1.1. Suppose that
∑∞

i=1 ai < ∞ and bi decreases monotonically to 0. Prove that∑∞
i=1 aibi <∞ as well. Hint: rewrite

∑∞
i=1 aibi as b1(a1 + d2(a2 + d3(a3 +d4(a4 + ...)))) where each

of the di ≤ 1. Observe that b1
∑∞

i=1 ai < ∞ and this implies that Ak ≡ b1
∑k

i=1 ai is a Cauchy

sequence. Use the representation suggested above to show that Bk ≡ b1
∑k

i=1 aibi is also a Cauchy
sequence. More precisely, if |Ak − Am| ≤ ε when k,m > Nε, then |Bk − Bm| ≤ ε when k,m > Nε

too.

Exercise 5.1.2. Find an example where
∑∞

i=1 ai <∞ and bi converges to 0, but
∑∞

i=1 aibi =∞.

Exercise 5.1.3. Show that if
∑∞

i=1 |ai| <∞ and bi converges to b 6=∞, then
∑∞

i=1 aibi <∞.

Exercise 5.1.4. Suppose that the partial sums in Exercise 5.1.1,
∑n

i=1 ai take on both negative and
positive values. Show that for any real number C, one can pick the non-increasing (and therefore, a
monotonic) sequence bi’s such that

∑∞
i=1 aibi = C. A bit harder: Show that the bi’s can be chosen

to be strictly decreasing.

Exercise 5.1.5. Define ||a||p ≡ (
∑n

i=1 |bi|p)
1
p where n can be any positive integer. Prove

∑n
i=1 |aibi| ≤

||a||p||b||q where 1
p + 1

q = 1. Hint: assume that ||a||p = ||b||q = 1 and use log’s and Jensen’s Inequal-
ity.
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Exercise 5.1.6. The sequence space lp, 1 ≤ p <∞ is defined to be all the sequences {ai}∞i=1 such

that ||a||p ≡ (
∑∞

i=1 |ai|p)
1
p < ∞. In the case that p = ∞, ||a||∞ ≡ supi{ai}∞i=1. Prove Holder’s

inequality for lp spaces.

Exercise 5.1.7. Use Holder’s inequality to prove that
∑∞

i=1 |aibi| ≤
∑∞

i=1 |ai|
∑∞

i=1 |bi|. Hint:
Prove that ||a||p < ||a||1 when a ∈ Rn, i.e. when a is a finite sequence: a = {ai}∞i=1.

Exercise 5.1.8. Note that l2 has copies of each of the spaces ln2 ≡ Rn, ∀n < ∞, embedded in it
isomorphically. More specifically, identify sequences which have all bu the first k components set
identically to 0, with the space Rk and name this subspace of l2, lk2 . Prove that

⋃
n l
n
2 is a subspace

of l2 that is not closed in l2, but is dense in l2.

Exercise 5.1.9. In finite dimensional vector spaces V , (1) a linear map from V to V that is onto
is one-to-one and (2) a linear map that is one-to-one is onto. (Show that!) Define Sr and Sl by
Sr : (a1, a2, a3, ...) → (0, a1, a2, a3, ...) and Sl : (a1, a2, a3, ...) → (a2, a3, a4, ...). Show that these
provide counterexamples in infinite dimensions to (1) an (2) above.

Exercise 5.1.10. Find the matrix representation of Sl in the case that we are working with
sequences of finite length n, and show that (Sl)

n ≡ Sl
1
◦ Sl

2
◦ · · · ◦ Sl

n
= 0. What similar kind of

statement can we make about Sl when we are working in infinite sequence spaces? Hint: for a
fixed a ∈ lp, think about (Sl)

k(a) as k →∞.

Exercise 5.1.11. Show that if A : Rn → Rn is a linear operator, then it has both left and right
inverses. Hint: Show that if the columns of A are independent (which implies A is right invertible)
then, if there is an x ∈ Rn such that x 6= 0 and xtA = 0 (which must be the case if A is not left
invertible), you can find a y ∈ Rn such that Ay = x and that is a contradiction.

Exercise 5.1.12. Continuing the line of thought in Exercise 5.1.11, show that if A : Rn → Rn is
linear, and ÂlA = I = AÂr, Âl = Âr. Hint: we can work with any matrix representing A, and I =
the matrix with ones down the diagonal, commutes with all matrices ...

Exercise 5.1.13. Continuing along the lines of Exercise 5.1.10, show that Exercises 5.1.11- 5.1.12
do not work in infinite dimensions by showing that Sl ◦ Sr = I but that Sr ◦ Sl 6= I.

Exercise 5.1.14. Suppose that a ∈ l2 and ||a||2 <∞. Define Aa : x ∈ l2 → y ∈ l2 by yi = xiai. Is
A a one-to-one mapping? Is Aa onto? Does the answer depend on a
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5.1.2 Representation and Approximation

Exercise 5.1.15. If f : [0, 1]→ [0, 1] is continuous, then Weierstrass-Stone approximation theorem
says that there is a sequence of polynomials that converge in the uniform norm to f on [0, 1].
How does this imply that only a countable infinity of numbers is needed to describe a continuous
function? But there is an easier way. Hint: what are the values of f at numbers of the form m

2k

where m ≤ 2k.

Exercise 5.1.16. How much information does it take to encode a function? Suppose that f :
[0, 1] → [0, 1] monotonically: f(x) ≤ f(y) when x ≤ y. Show that you can describe f with a
countable sequence of numbers. Hint: define a1 = x ∈ [0, 1] such that al1 ≡ limx↑a1 f(x) ≤ 1

2 and
ar1 ≡ limx↓a1 f(x) ≥ 1

2 and b1 = ar1−al1 and c1 = f(a1). Three infinite sequences suggested describe
f at all points in [0, 1]. Complete the description of the three sequences and prove they do describe
f completely.

Exercise 5.1.17. There is another approach to the description of monotonic functions of Exer-
cise 5.1.16 that, like the second method of solution in Exercise 5.1.15 simply samples the values
of f at numbers of the form m

2k
where m ≤ 2k. But another possibly infinite sequence of pairs of

numbers is needed! What are those pairs needed for? Hint: If f has discontinuities, what does the
sampling of f possibly not capture.

5.2 More Linear Algebra Problems

While there are linear algebra problems in the analysis problems above in this chapter and there
will be analysis type problems in this section, generally speaking the motivation for a thread of
problems here will be some question involving linear operators, subspaces, projections, decomposi-
tions, matrices, etc. I will not distinguish between a vector and its representation in coordinates,
nor between an operator and its matrix representation unless confusion would result.

Exercise 5.2.1. The projection of a vector in Rn onto some unit vector w ∈ Rn is given by the
rank 1 n×n matrix wwt. Prove that I−wwt is the projection onto w⊥, the orthogonal complement
of w.

Exercise 5.2.2. Suppose that w1, ..., wk are k orthonormal vectors in Rn and n > k. Let W ≡
span(w1, ..., wk). Inspired by Exercise 5.2.1, what is the operator projecting Rn orthogonally onto
W⊥?

Exercise 5.2.3. Suppose that a1, a2, ..., an are n distinct real numbers. Prove that

A =


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2

1 a3 a2
3 · · · an−1

3
...

...
...

...
1 an a2

n · · · an−1
n


is invertible. Hint: Show the columns are linearly independent. Notice that for any α ∈ Rn the
first element of Aα = f(a1) for some f(x). What kind of function is f(x)?
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Chapter 6

Solutions to some of the problems

Solution to Exercise 2.7.23: The key idea is that we can densely sprinkle around tiny spots
where f ′ = 1, but limit the total footprint of those spots to ε. You should sketch what is going
on in the construction below, because what looks complicated is just the fact that writing down
something that is not too complicated to draw is not easy.

1. Define

Λ̂(x) =


0 x ≤ −1
x+ 1 −1 ≤ x ≤ 0
1− x 0 ≤ x ≤ 1
0 1 ≤ x

2. Let φ : R1 → R1 be an even, positive C∞, bump function centered at the origin, with support
in [− 1

16 ,
1
16 ] and

∫
φ dx = 1.

3. Define Λ(x) = (Λ̂ ? φ)(x) – Λ is the convolution of Λ̂ with φ. Λ is a C∞ version of Λ̂,
that equals Λ̂ except on the intervals (−17

16 ,−
15
16), (− 1

16 ,
1
16), and (15

16 ,
17
16) where it has been

smoothed/mollified. Note also that Λ(x) ≤ Λ̂(x) for all − 1
16 ≤ x ≤

1
16 .

4. Define Λα(x) = αΛ( xα). For r < 1, Define the (r, y)-patch to be the graph of the function
Λr2 inside the interval (r, r), all shifted so that the interval and function are centered on y.

5. Define P̂1 = {1
2} and P̂k = { 1

2k
, 2

2k
, ..., 2k−1

2k
} \
⋃k−1
i=1 P̂i.

6. Now choose ε << 1.

7. Choose r1 such that 2r1 = ε
2

8. Define P2 = P̂2 ∩
(
B̄(1

2 , r1)
)c

.

9. Define Pi = P̂i ∩
(⋃

p∈Pj ,j<i B̄(p, rj)
)c

where ri is defined by:

(a) 2ri|Pi| ≤ ε
2i

(b) B̄(p, ri) ∩
(⋃

q∈Pj ,j<i B̄(q, rj)
)c

for all p ∈ Pi.

10. Notice that all the B̄(p, ri) ∩ B̄(q, rj) 6= ∅ whenever p ∈ Pi and q ∈ Pj .
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11. Define E ≡
(⋃

p∈Pi,i=1,2,... B̄(p, ri)
)c

and notice that H1(E) ≥ 1 − ε. Notice also that E =⋂∞
k=1Ek where Ek ≡

(⋃
p∈Pi,i=1,2,...,k B̄(p, ri)

)c
and each Ek is open.

12. Define f(x) = 0 when x ∈ E. In each of the B̄(p, ri) we define f to be a (ri, p)-patch. Note
that f is Lipschitz with Lipschitz constant 1 is differentiable everywhere and that f ′ is not
continuous at any point of E. (It takes a little effort to verify this, but depends on the fact
that if x ∈ E, then x ∈ Ek for all k, so we can choose a radius for a neighborhood centered
at x such that this neighborhood does not intersect (Ek)

c which means that all of the graph
of f in this neighborhood fits in a cone with upper slope ≤ rk+1 ≤ ε

2k+1 . Thus while there
are points y arbitrarily close to x such that f ′(y) = 1, the derivative exists at x and equals
0. )



Appendix A

Manifolds and Nonlinear Analysis I: Non-
linear spaces and Manifolds

In this lecture and the next, we give an intuitive overview of some ideas in nonlinear analysis. We
will deal primarily with manifolds and mappings between manifolds.

A.1 Rn and why we like it.

We are all acquainted with R2 and R3. Many of us have worked extensively with Rn, usually by
analogy with R2 and R3. Here are some familiar properties and things we can do using those
properties:

Vector Space: Rn is a vector space with elements of the form x = (x1, x2, ..., xn)

Inner product: The inner product of x and y, x · y or 〈x,y〉, is given by
∑n

i=1 xiyi.

Euclidean distance: The length of a vector x is given by ||x||2 =
√∑n

i=1 x
2
i =

√
x · x, so the

distance between two points is simply ||x− y||2.

Angles between vectors: Angles between vectors are given by cos(θ) = x·y
||x|| ||y|| .

Linear Transformations: A Linear transformation between Rn and Rm, which is most often
represented and computed using matrices A ∈ Rm×n, makes sense because the Rk is a linear
space for all k.

Calculus: Differentiation also makes sense because of the linear space structure of Rn. We also
use the metric structure to define volumes and integration.

All this makes life in Rn beautiful. Calculations are easy, shortest distances between points are
straight lines, and our experience with 2 and 3 dimensions, which Rn is meant to mimic and extend,
makes it all very accessible, intuitively speaking.

But the subsets of Rn we work with are often curved and contorted. k-dimensional surfaces are
everywhere, from graphs of functions to parameterized sets in Rn, from level sets of mappings to
sets in Rn that contain all possible samples of some data set we are trying to model. On top of
that, there are spaces of points that we find natural to use and possess Rk-like properties, yet are
not subsets of any Rn

The structure that comes to our rescue is the k-manifold.

73



74 APPENDIX A. MANIFOLDS I

A.2 k-Manifolds in Rn are locally like Rk

Definition A.2.1 (k-manifold in Rn). Define Lk to be the k-dimensional subspace of Rn defined
by holding the last n−k coordinates equal to 0, i.e. all points in Rn of the form (x1, x2, ..., xk, 0, ..., 0).
A k-dimensional manifold Mk is a subset that is locally like Rk. At every point x ∈Mk, there is

1. a neighborhood U ⊂ Rn containing x and

2. a diffeomorphism φx : U →W ⊂ Rn

such that

1. W is a neighboorhood of 0 in Rn,

2. φx(x) = 0

3. φx(U ∩Mk) = W ∩ Lk

This definition is far from as general as possible, but for our purposes it will work quite well.
In fact, one can take this definition a long ways, and understanding it thoroughly equips one to
work with the other more general definitions out there.

The idea is that we will want to use the φ’s to enable ourselves to do calculus on the manifold.
Care must be taken, but everything works out pretty much as one would expect. One tool that
is used over and over is the use of local approximations to the manifolds and mappings between
manifolds. The first is called the tangent space at x, the second is DFx, the deriviative or differential
of F at x.

The tangent space of Mk at x is the k-plane Tx that is tangent to Mk at x. As we zoom into Mk

at x, it looks more and more like Tx: this is really just a higher dimensional analog of the tangent
line you are acquainted with from the idea of derivatives in Calculus 1. To be a bit more precise,

Definition A.2.2 (Tangent Space at x). If Mk is a k-manifold, then Tk is the unique k-
dimensional subspace of Rn such that for every ε > 0 there is an rε such that for every point
y ∈Mk ∩B(x, rε)

||PTx(y − x)|| ≥ (1− ε)||y − x||

where PTx(u) is the orthogonal projection of u onto Tx.

This definition says that given any ε and a sufficiently small ball around x, the piece of the
manifold inside that ball, Mk∩B(x, rε), lives in a cone about Tx whose apical half angle is cos−1(1−
ε). Thus, by making ε sufficiently small, the tangent plane approximates Mk as well, provided we
zoom in far enough.

In the next section, we look at derivatives as approximations to mappings.

A.3 Derivatives as linear approximations

Ordinarily, one thinks of derivatives as slopes of tangent lines or even the limit of the ratio
f(x+h)−f(x)

h as h → 0. While this is correct for maps from R to R, another equivalent definition
turns out to be very useful. First we define o(h)

Definition A.3.1. We say f(h) = g(h) + o(h) if |f(h)−g(h)|
|h| → 0 as h → 0. o(h) is pronounced

“little o of h”.
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Now we can define derivatives, approximation style:

Definition A.3.2 (Derivative of a map F : Rn → Rm). Given F : Rn → Rm, we will say that
F is differentiable at x ∈ Rn if there is a linear operator A : Rn → Rm such that

F (x+ h)− F (x) = A(h) + o(h)

We denote this linear operator A by DFx.

In other words, DFx is the local, linear approximation of (∆xF )(h) = F (x + h) − F (x), the
change or increment of F at x.

If F (x) = (F1(x), F2(x), ..., Fm(x)) is differentiable, the linear map that gives us this approxi-
mation turns out to be the matrix of partial derivatives of F :

DFx =


∂F1
∂x1

(x) ∂F1
∂x2

(x) . . . ∂F1
∂xn

(x)

∂F2
∂x1

(x) ∂F2
∂x2

(x) . . . ∂F2
∂xn

(x)
...

...
...

∂Fm
∂x1

(x) ∂Fm
∂x2

(x) . . . ∂Fm
∂xn

(x)


Example A.3.1 (F : Rn → R). In the case of a function mapping Rn to the real numbers, we
get DFx = ∇F |x: the derivative of F at x is the gradient of F at x, a row vector made up of the
partial deratives of F .

Remark A.3.1. The tangent plane of Mk at x can now be expressed quite simply. If φx is the
coordinate map of Mk at x, then Tx+x = D(φ−1

x )x(Lk), where Lk is defined as in Definition A.2.1.

When F is differentiable, it is natural to ask, “How differentiable?”

Definition A.3.3. If the derivative of F exists and is continuous, then we will say F is C1.
When that derivative has a derivative that is continuous, it is C2. Likewise when F is k-times
continuously differentiable, it is Ck.

A.4 Full rank maps

Definition A.4.1 (Full Rank). Let A be an m × n matrix. Then A is full rank if any of the
following equivalent conditions are true:

1. dimension of the null space of A is max(0, n−m)

2. there are min(m,n) independent columns

3. there are min(m,n) independent rows

Remark A.4.1. If a matrix is full rank, then a sufficiently small perturbation will not change that
fact.

Definition A.4.2 (Level sets). The level sets of a mapping F : Rn → Rm are the collection of
sets F−1(y) ⊂ Rn for all y ∈ Rm.

Definition A.4.3 (Full Rank Mapping). A mapping F : Rn → Rm is full rank on a level set
F−1(y), if DFx is full rank for all x ∈ F−1(y).
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Define Wy = F−1(y). When DFx is full rank on Wy, properties of the level sets of the derivative
at points in Wy translate into properties of the nonlinear set Wy.

Definition A.4.4. When the coordinate diffeomorphisms in the definition of a k-manifold are of
Cp, then we say that the manifold is of class Cp.

Theorem A.4.1 (Full Rank Theorem). Suppose that F is Cp with p ≥ 1. When DFx is full
rank on Wy = F−1(y), Wy is a Cp, k-manifold in Rn, with k = max(0, n−m).

We will see the reasons for this in detail in the next section.

A.5 Inverse and implicit function theorem

For smooth maps, the derivative gives us complete local information about the structure of the
level sets of F .

Theorem A.5.1 (Inverse Function Theorem). Suppose that F : Rn → Rn, x ∈ Rn, F is Ck,
k ≥ 1 and DFx is invertible. Then there is some ε > 0 such that F : B(x, ε) → F (B(x, ε)) is
invertible and the inverse function G : F (B(x, ε))→ B(x, ε) is also Ck.

The basic idea is that when the map is full rank (in this case, the derivative is invertible) the
derivative’s invertibility, the fact that the derivative approximates the nonlinear function locally,
and the fact that being full rank is stable to small perturbations all translate into the nonlinear
map being invertible.

Proof.
We outline the proof: Assume without loss of generality (WLOG) that F(0) = 0. Choose 0 < ε <
1/2

1. Define G = I −DF−1
0 ◦ F .

2. Using the fact that F is C1 we notice that the norm of DG, ||DG||, is less than ε if we stay

in some small neighborhood of the origin U = B(0, δ(ε)): I.e. ||DG(h)||
||h|| < ε for all h ∈ U .

3. Define W = B(0, δ(ε)2 ).

4. Using the mean value theorem in vector spaces, we get that restricted to W , G is a contraction
mapping with contraction constant ε.

5. Define H = (I + G + G2 + G3 + ...). Notice that H is differentiable and DH = I + DG +
DG ◦DG+ ....

6. Notice that D(H(I −G)) = DH ◦D(I −G) = I. Choose y ∈W . Integrating, we get:

H(I −G)(y) = H(I −G)(y)−H(I −G)(0)

=

∫ 1

0
(D(H(I −G))ty) (y)dt

=

∫ 1

0
I · ydt

= y

so that H(I −G)|W = H ◦DF−1
0 ◦ F = IW .
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7. defining F̂ = H ◦DF−1
0 , we get that F̂ ◦ F = IW .

8. Likewise D((I −G)H) = D((I −G) ◦DH = I implying that (I −G)H|W = IW or DF−1
0 ◦

F ◦H = IW . multiplying the last equation on the left by DF0 and on the right by DF−1
0 ,

we get that F ◦ F̂ = IF (W ).

9. The Ck differentiability of F̂ follows from the Ck differentiability of F .

Theorem A.5.2 (Implicit function Theorem). Suppose that F is Ck, F : Rn → Rm, m < n,
and DF is full rank at x∗ ∈ Rn. We will denote the first m coordinates by x′ and the last n −m
by x′′ so that x = (x′, x′′). Suppose further, without loss of generality, that the first m columns
of DF are independent. Then there is an ε > 0 and a Ck mapping g : Rn−m → Rm such that
F (g(x′′), x′′) = F (x∗) for all x′′ ∈ Rn−m such that ||x′′ − (x∗)′′|| < ε.

Proof.
The idea of the proof is simple: we augment F to get an invertible transformation and then
fiddle with it. Define F̂ : Rn → Rn by F̂ (x) = (F (x), x′′). Now we note that DF̂x∗ is invertible
so that there is an inverse of F̂ , G(y) = (g(y′, y′′), y′′). Computing F̂ ◦ G(y) (= y) we have
F̂ (G(y)) = (F (g(y′, y′′), y′′), y′′) = (y′, y′′) for all y = (y′, y′′) in some neighborhod of (F (x∗), x∗′′).
Looking at the first component only, we have F (g(y′, y′′), y′′) = y′. Fixing ĝ(y′′) = g(F (x∗), y′′), we
get that F (ĝ(y′′), y′′) = F (x∗) for all ||y′′ − x∗′′|| < ε for some sufficiently small ε > 0.

Example A.5.1. Consider some function f mapping Rn to R. Then in order to apply the implicit
function theorem at some point x∗, we need Df = ∇f to be full rank at x∗. Since min(m,n) = 1,
at least one component of the gradient needs to be non-zero at x∗ in order to conclude that locally,
the level set through x∗ is an (n− 1)-manifold.
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Appendix B

Manifolds and Nonlinear Analysis II:
Nonlinear Thinking

B.1 Lipschitz Functions

Definition B.1.1 (Lipschitz Mappings ). F : X → Y is Lipschitz if there is a positive number
K ≥ 0 such that |x− y| ≤ K|F (x)− F (y)| for all x, y ∈ X.

Radamacher’s theorem tells us that a Lipschitz function is differentiable almost everywhere!

Theorem B.1.1 (Radamacher’s Theorem). If F : Rn → Rm is Lipschitz, then the set of points
at which it fails to be differentiable has measure zero. I.e. F Lipschitz ⇒ F is differentiable almost
everywhere.

It turns out that Lipschitz functions are nice enough for many purposes. While differentiability
everywhere generally makes proofs easier, often having only Lipschitz smoothness does not stand
in the way of various useful (smooth) theorems being true for them as well.

B.2 Area and Coarea formulas

The behavior of integrals and volumes under mappings is the focus of the next two highly useful
results.

First we consider Lipschitz maps F : Rn → Rm when n ≤ m. Define |JF | =
√

det(DF T ◦DF ),
where the T superscript indicates transpose.

In this case we have:

Theorem B.2.1 (Area Formula).∫
Ω
|JF |dHn =

∫
F (Ω)
H0(F−1(y) ∩ Ω)dHny

When a Lipschitz F : Rn → Rm when n ≥ m. Define |JF | =
√

det(DF ◦DF t). Now we have:
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Theorem B.2.2 (Coarea Formula).∫
Ω
|JF |dHn =

∫
F (Ω)
Hn−m(F−1(y) ∩ Ω)dHmy

We can add functions to get more general results:

Theorem B.2.3 (Area Formula, version 2).∫
Ω
g(x)|JF |dHnx =

∫
F (Ω)

(∫
F−1(y)∩Ω

g(x)dH0x

)
dHny

and:

Theorem B.2.4 (Coarea Formula, version 2).∫
Ω
g(x)|JF |dHn =

∫
F (Ω)

(∫
F−1(y)∩Ω

g(x)dHn−mx

)
dHmy

While it is not hard to combine both version 2’s to get a general area-coarea formula, there is
not much advantage to that.

Remark B.2.1. Integrating over F (Ω) in each of the RHS’s of the above formulas is redundant
since we are always taking the intersection F−1(y) ∩ Ω.

At first these two results seem rather abstract, but in fact, you have already used them before
since they generalize the change of variables forrmula you have seen for integrals in calculus. To
really understand these two formulas, we need to look at simple examples.

Example B.2.1 (Integrating over spheres and then radii). Suppose that we want to integrate
a function over Rn by first integrating it over a sphere centered on the origin and then integrating
those results over the various radii. Then we can use version 2 of the Coarea Formula and F = ||x||
together with the facts that ∇F = x

||x|| and |JF | = x
||x|| ·

x
||x|| = 1 for all x 6= 0 to get

∫
Ω
g(x)dHn =

∫ ∞
0

(∫
∂B(0,r)∩Ω

g(x)dHn−1x

)
dH1r

Example B.2.2 (A Nonlinear Fubini’s Theorem). The example above of integrating over
spheres and then over radii is a special case of integration over distance functions. If we let h(x) =
d(x,K) where d(x,K) is the distance from x to the set K, we have thatthe gradient of d is is a unit
vector everywhere except on the interior of K so the Jacobian |Jd| = 1 almost everywhere. Our
result is then: ∫

Ω
g(x)dHn =

∫ ∞
0

(∫
{x|d(x,K)=r}∩Ω

g(x)dHn−1x

)
dH1r

Example B.2.3 (Area of graphs). If we want to know the n-area (or n-volume) of a graph of
F : Rn → R1 over Ω ∈ Rn, then we are asking for the n-volume of the set {(x, F (x))|x ∈ Ω} ⊂ Rn+1.
We define the mapping F̂ : Rn → Rn+1 by F̂ (x) = (x, F (x)). We get that

DF̂ =

[
In
∇F

]
,
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Where ∇F is the row vector of partial derivatives of F . We could compute

√
det(DF̂ t ◦DF̂ ) or

we can use the fact that this is simply the n-volume of the n columns and use the generalized
pythagorean theorem to compute this from DF̂ . That theorem says that the square of the n volume
of this matrix is equal tp the sum of the squared determinates of the n+1, n×n submatrices. When
we compute this we get

√
1 +∇F · ∇F . Anothe way to get this is to change coordinates so that the

the gradient only has an xn component. Then

DF̂ t ◦DF̂ =

[
In−1 v1

vt1 1 +∇F · ∇F

]
.

where v1 is a column of n − 1, 0’s, and we get the same result. Finally, looking at this purely
geometrically, we can also get this result by noicing that the area of a little pice of the graph is
increased by exactly the ratio between the hypotenuse of a triangle with horizontal 1, vertial side
||∇F || and the horizontal side length.

Remark B.2.2 (In Class Pictures!). I will give an intuitive explanation of both the area and
coarea formulas in class. Eventually the pictures and explanations will appear in the notes as well.

B.3 Sard’s Theorem

It is clear that the measure of points in the domain where the rank of a mapping is not full can
be large. In fact, simply using the 0 mapping gets you a mapping whose rank is never full on the
entire domain. This raises the point, what is the measure of the points in the range that come from
points in the domain where the rank is not full?

The answer now is not very much: to be more precise, only a set of measure zero.

Theorem B.3.1 (Sard’s Theorem). Suppose that F : Rn → Rm and that F is Ck with k ≥
n−m+1. Define C to be the set of points x ∈ Rn such that rank(DFx) < m. Then Hm(F (C)) = 0.

This theorem is a technical tool extensively used in analysis and geometric analysis. It justifies
the intuition that when the rank of the derivative is less than n, so that the derivative is not onto,
then the mapping squeezes space down, collapsing at least one dimension, yelding a measure zero
set.

Most of the typical proof of this result is not very enlightening, with the exception of the last
part in which you show that the measure of the image of Ck, the points where all partial derivatives
of order k and below, is zero. The argument uses Taylor’s theorem to show that the image of a
cover of Ck must be reduced in volume to a volume that behaves like δk+1− n

m where δ is the edge
length of a cubical grid that is going to zero as we choose finer and finer discretizations. The first
part of the proof is an inductive argument. See chapter 3 of Milnor’s little book on differential
topology for all the details [9].

B.4 Transversality is Generic

Intersections of submainfolds of various dimensions are encountered all the time; one can, for
instance, look at Ax = b where A is an m × n matrix, as a statement of a problem of finding a
point (or all points) in the intersection of m, n-1-dimensional subspaces of Rn. We are also often
interested in how stable our problem is to perturbations. What can we say about some problem if
we add a bit nof noise, or jiggle some parameters a tiny bit?

For these questions, the key concept is the idea of transverse intersection of subspaces.



82 APPENDIX B. MANIFOLDS II

Definition B.4.1 (Transverse Intersection of Subspaces). Two subspaces of Rn, Uk and Wm

of dimension k and m respectively, are said to intersect transversely if the span(Uk,Wm) = Rn.

This leads directly to the idea of transverse intersections of submanifolds:

Definition B.4.2 (Transverse Intersection of Submanifolds). Two sumanifolds of Rn, M
and N , intersecting at x are said to intersect transversely at x if the tangent spaces TxM and TxN
intersect transversely as subspaces of Rn, I.e. if span(TxM,TxN) = Rn.

Example B.4.1 (2 Curves in R3). In R3, an intersection between 2, 1-manifolds is never trans-
verse.

Example B.4.2 (A 1-Curve and a 2-Surface in R3). In R3, an intersection between a 2-
dimensional surface and a 1-dimensional curve is transverse if and only if the curve is not tangent
to the surface at the point of intersection.

Example B.4.3 (2 arbitrary submanifolds). If Mk and Np are k and p dimensional subman-
ifolds of H = Rn, then they intersect transversely if in a neighborhood of the intersection point
x ∈Mk ∩Np, we have that dim(Mk ∩Np) = dim(Mk) + dim(Np)− dim(H) = p+ k − n.

Transverse intersections are stable: if we take an arbitrary intersection between arbitrary com-
pact submanifolds, then if it is not transverse it can be made transverse using an arbitrarily small
perturbation. If on the other hand the intersection is transverse, then any perturbation of small
enough magnitude will not change that fact.

B.5 Fixed point theorems: Banach Fixed Point Theo-

rem

Many problems can be written as:

Problem B.5.1 (Finding Fixed Points). Given a mapping F from a space X to itself, F : X →
X, find x∗ such that F (x∗) = x∗.

We will look at one theorem that gives the existence of unique fixed points. First we have to
introduce the idea of a Banach space.

Definition B.5.1 (Vector Space Norm). Suppose that α ∈ R and x, y ∈ X, X a vector space.
Then a function from || · || : X → [0,∞) is a norm if is satisfies:

1. ||x|| > 0 when x 6= 0

2. ||αx|| = |α|||x||

3. ||x+ y|| ≤ ||x||+ ||y|| (the triangle inequality)

Definition B.5.2 (Cauchy Sequence). Recall that xi ∈ X is Cauchy if for any ε > 0 there is
an N(ε) such that i, j > N(ε) imples that ||xi − xj || < ε.

Definition B.5.3 (Complete Space). If every Cauchy sequence in X has a limit in x, the X is
complete. I.e. if {xi}∞i=1 is Cauchy, then there must also be a point x∗ ∈ X such that ||xi−x∗|| → 0
as i→∞.
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Definition B.5.4 (Banach Space). A complete, normed vector space B is called a Banach
Space.

Definition B.5.5 (Contraction Mapping). A function from a normed space X to itself is a
contraction maping if ||F (x)− F (y)|| < k||x− y|| for some 0 ≤ k < 1.

Note that a contraction mapping is a special case of a Lipschitz mapping.

Theorem B.5.1 (Banach Fixed Point Theorem ). Suppose that F : B → B is a contraction
maapping from the Banach space B to itself. Then there is a unique point x∗ such that F (x∗) = x∗.

Proof.
First note that if here are two distinct fixed points x∗ and y∗ then ||x∗− y∗|| = ||F (x∗)−F (y∗)|| <
k||x∗ − y∗|| with k < 1 which is a contradiction. so there cannot be more than one fixed point. To
prove that there is a fixed point

1. choose any x0 ∈ B and define x1 = F (x0), x2 = F (x1) = F (F (x0)) = F 2(x0) and likewise
xn = Fn(x0).

2. We note that xi is a Cauchy sequence:

(a) ||F i+1(x0)− F i(x0)|| ≤ ki||F (x0)− x0||
(b) for n > m

||xn − xm|| = ||Fn(x0)− Fm(x0)||

≤

(
n−1∑
i=m

ki

)
||F (x0)− x0||

= km(

n−m−1∑
i=0

ki)||F (x0)− x0||

≤ km(

∞∑
i=0

ki)||F (x0)− x0||

=
km

1− k
||F (x0)− x0||.

So, as long as n,m > N we have that

||Fn(x0)− Fm(x0)|| ≤ kN

1− k
||F (x0)− x0|| →

N→∞
0

(c) Thus, {xi}∞i=1 is a Cauchy sequence.

3. Therefore, there is a point x∗ in B such that xi → x∗ as i→∞.

4. Since F is continous, we have that limi→∞ F (xi) = F (limi→∞ xi) = F (x∗). But F (xi) = xi+1

so limi→∞ F (xi) = limi→∞ xi+1 = x∗. Thus F (x∗) = x∗.
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Appendix C

Modes of Convergence and Three The-
orems

If {fi}∞i=1 is a sequence of functions from our measure space to R, fi : X → R, we would like to
know how the integral behaves in relation to convergence of the sequence. That is when is it true
that:

lim
i→∞

(∫
fi dx

)
=

∫ (
lim
i→∞

fi

)
dx? (C.1)

This is actually a motivating question that leads us to try to understand the differences between
the different modes of convergence or closeness that can be defined. We begin by exploring some
examples a bit.

C.1 Examples

Reminder – Uniform Convergence: we say that fi converges uniformly to f if

sup
x∈X
|fi(x)− f(x)| →

i→∞
0.

When the measure and convergence of fi to f are

Finite and Uniform: i.e. µ(X) <∞, and supx∈X |fi(x)−f(x)| →
i→∞

0, the answer to the question

in Equation C.1 is yes!

Non-finite Measure, Uniform Convergence: The same question is answered no, and

Finite Measure, Non-uniform Convergence: no in this case too.

Exercise C.1.1. Show that finite measure and uniform convergence implies we can switch limits
with integration, in other words that the answer to the question in Equation C.1 is yes.

Exercise C.1.2. Give an example of a sequence of functions fi approaching f uniformly, on a
measure space X for which µ(X) is infinite, where the answer to C.1 is no. Hint: look at constant
functions on the real line.
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Exercise C.1.3. Give and example of a uniformly convergent sequence fi on an infinite measure
space X, such that

lim
i→∞

(∫
fi dx

)
= 2

and ∫ (
lim
i→∞

fi

)
dx = 0

Exercise C.1.4. Give an example of a non-uniformly convergent sequence fi on a finite measure
space X where again the answer to C.1 is no. Hint: on the unit interval, with the usual Lebesgue
measure, try to construct a sequence fi → f ≡ 0 such that

∫
fi dx = 1 for all i.

C.2 Types or Modes of Convergence

The above examples look at the question of the connection between pointwise convergence and
congergence in norm. But convergence in norm (i.e.

∫
|fi − f | dx→ 0) is not the only alternative

to pointwise convergence. Here are the five modes of convergence that are important to know
about.

Uniform Convergence We say that fi converges uniformly to f if

sup
x∈X
|fi(x)− f(x)| →

i→∞
0.

Convergence AE If fi → f as i→∞ for all but a measure 0 set of points, we say that fi is con-
veres to f almost everywhere (a.e.). This is somtimes refered to as poitwise convergence.

Convergence in measure If, for any ε > 0 we have that

lim
i→∞

µ({x||fi(x)− f(x)| ≥ ε}) = 0

then we sat that fi converges to f in measure.

Convergence in norm If limi→∞ ||fi − f || = 0, where || · || is a norm on the function space
containing The seqeunce fi and limit f , then we sat that the fi converge in norm to f . This
is also refered to as strong Convergence.

Weak Convergence To define weak convergence, we need the notion of a family of test func-
tions. Typically, test functions are functions that are nice or even very nice, like positive
C∞ functions with compact support. We will denote the family of functions by Φ and an
individual test function my φ.

We will say that fi converges weakly to f if

lim
i→∞

∫
φfi dx =

∫
φf dx

for all test functions φ ∈ Φ.
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Exercise C.2.1. Find an example of a sequence of functions fi that converges to f ≡ 0 in norm
even though fi(x) does not converge to 0(= f(x)) for any x ∈ X

Exercise C.2.2. Find an example of a sequence of functions fi that converges pointwise to f ≡ 0
(everywhere, not just a.e.), even though ||fi(x)− f(x)|| = ||fi(x)|| =

∫
|fi| dx does not converge to

0. (I.e. fi does not converge in norm to f

Exercise C.2.3. Find an example to show that convergence in measure does not imply convergence
in norm. Hint: the fi need not be bounded.

Exercise C.2.4. Suppose we choose the norm given by ||g|| =
∫
|g| dx. Show that if the fi and f

are uniformly bounded (i.e. −C ≤ fi, f ≤ C for some C > 0), then convergence in measure implies
convergence in norm and convergence a.e.

Exercise C.2.5. Find an example of a sequence of functions fi which converge to 0 nowhere, but
which do converge weakly to f ≡ 0.

Exercise C.2.6. Look at all the posibilities! Suppose we identify each of the 5 bit binary
numbers with a set of convergence types: fi →01101 (f ≡ 0) would be shorthand for the fact that
fi converges to the zero function a.e., in measure and weakly but not uniformly or in norm. Is it
possible to find sequences converging to zero for each of the binary numbers? If not which ones are
possible?

C.3 The Three Theorems

The next three theorems and the examples that follow tell us that we have to be a bit careful, but
that in many useful cases, things go well – we can switch the order of integration and limit taking!
First though, we need to introduce the notion of lim inf f and lim sup f .

Definition of limsup and liminf Suppose that f : N → R. Then the behavior of f as its
argument approaches infinity can be complicated. In particular, it might not approach a limit. If
we think visually about the sets Fn ≡ {f(i)|i ≥ n}, we could imagine the smallest closed inteval
containing Fn – call it In – and ask how In varies as n→∞. Then lim inf f and lim sup f are the
left and right endpoints of the smallest interval in the range that “eventually” contains f. This is
made precise in the following exercise.

Exercise C.3.1.

1. Show that Ii ⊃ Ii+1 for all i

2. Choose li and ri such that Ii = [li, ri]. Show that l∗ ≡ limi→∞ li and r∗ ≡ limi→∞ ri both
exist and that l∗ ≤ r∗.

3. Suppose that l∗ = r∗. Show that limi→∞ f(i) exists and is equal to l∗ = r∗.

4. Suppose that l∗ < r∗. Show that if l∗ < α < r∗, then for every n there exists i > n such that
f(i) > α and a j > n such that f(j) < α.
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We call the l∗ the lim inf and r∗ the lim sup. By working through the excercise, it becomes clear
that the lim infi→∞ f and lim supi→∞ f define the eventual envelope which contains f’s oscillations
“at infinity”.

We now define lim inf f and lim sup f more concisely:

Definition C.3.1 (lim supi→∞ f(i) and lim infi→∞ f(i)). Suppose that f : N→ R.

lim sup
i→∞

f ≡ lim
n→∞

(
sup
i>n

f(i)

)

lim inf
i→∞

f ≡ lim
n→∞

(
inf
i>n

f(i)

)
Exercise C.3.2. Rework Exercise C.3.1 for functions f : R → R, to get the analog notions,
lim infx→∞ f and lim supx→∞ f .

Definition C.3.2 (lim supi→∞ fi(x) and lim infi→∞ fi(x)). Suppose that fi : X → R for some
measure space X. For a sequence of functions fi(x) we define

lim inf
i→∞

fi

to be the pointwise limit,

l(x) = lim inf
i→∞

fi(x),

and we define

lim sup
i→∞

fi

to be the pointwise limit,

u(x) = lim sup
i→∞

fi(x).

Now we can state the three theorems:

Theorem C.3.1 (Fatou’s Lemma).∫
lim inf
i→∞

fi dx ≤ lim inf
i→∞

∫
fi dx

Theorem C.3.2 (Monotone Convergence). Suppose that {fi} are all measureable and that 0 ≤
f1 ≤ ... ≤ fi ≤ fi+1 ≤ .... Then we have that

lim
i→∞

∫
fi dx =

∫
lim
i→∞

fi dx.

Theorem C.3.3 (Dominated Convergence Theorem). If fi → f µ a.e., |fi|, |f | < g and
∫
g dx <

∞, then ∫
|fi − f | dx→ 0 as i→∞.
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C.3.1 Proofs and Discussion of the Three Theorems

Traditionally, the monotone convergence theorem is shown and then used to prove Fatou’s lemma,
which is used to prove the dominated convergence theorem. One can also prove Fatou and use
that to prove both the monotone convergence and dominated convergence theorems (See Evans
and Gariepy’s first chapter). We will prove the three theorems by first proving the dominated
convergence theorem and then use that theorem to prove the monotone convergence theorem,
which in turn will be used to prove Fatou’s lemma.

Proof of the Dominated Convergence Theorem.

(i) First we define a new measure µg(E) ≡
∫
E g dx whenever E is µ-measurable. For non-

measurable F, we define µg(F ) = inf{E|F⊂E}
∫
E g dx where the E are of course measurable.

Since g is µ-summable, we have that µg(X) < ∞. One can show that every µ-measurable
set E is also µg-measurable (See exercise C.3.3).

(ii) Choose an ε > 0. define En = {x||f(x)− f(xi)| < εg ∀ i ≥ n}. We have that the Ei is µ and
therefore µg measureable for all i. We also have that ...Ei−1 ⊂ Ei ⊂ Ei for all i ≥ 2. Since
µg(X) <∞, we have that limi→∞ µg(X \ Ei) = 0.

(iii) Choose n big enough that µg(X \ Ei) ≤ ε and conclude that∫
|f − fi| dx =

∫
X\En

|f − fi| dx+

∫
En

|f − fi| dx

≤ 2

∫
X\En

g dx+

∫
En

εg dx

≤ 2µg(X \ En) + ε

∫
g dx

≤ 2ε+ ε

∫
g dx

Because ε is arbitrary, we have that
∫
|f − fi| dx→ 0 as i→∞.

Exercise C.3.3. Weighted Measures: µg from µ

(a) If µ is an outer measure, with measurability determined using Carathrodory’s criterion, g ≥ 0
and

∫
g dµ <∞, then we can define

µg(F ) ≡ inf
(E µ-measurable , F⊂E)

∫
E
g dµ.

Prove that µg is an outer measure and that µ-measurability implies
µg-measurability.

(b) Give an example illustratiing why µg-measurability does not imply µ-measurability.

(note) The notation µ g is also used to denote µg.

Proof of Monotone Convergence Theorem.
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(i) If
∫
g dx <∞, use the dominated convergence theorem to get the result.

(ii) If
∫
g dx = ∞, then we can find a simple function gC such that gC ≤ g everywhere and∫
gC dx > C.

(iii) Define En = {x|gi > (1− ε)gC ∀ i ≥ n}. Choose n big enough that µgC (X \ En) ≤ ε.

(iv) Note that we have ∫
gi dx ≥

∫
En

gi dx

≥
∫
En

(1− ε)gC dx

≥ (1− ε)(C − ε)

Since ε is arbitrary and C is a big as we like, we have that
∫
gi dx→

∫
g dx.

Proof of Fatou’s Lemma.

(i) Define hn(x) = infi≥n fi(x). Note that lim infi→∞ fi = limi→∞ hi.

(ii) Note that
∫
hn dx ≤

∫
fi dx for all i ≥ n. We conclude that

∫
hn dx ≤ lim infi→∞

∫
fi dx for

all n.

(iii) This implies that

lim inf
i→∞

∫
fi dx ≥ lim

n→∞

∫
hn dx

=

∫
lim
n→∞

hn dx (by the monotone convergence theorem)

=

∫
lim inf
n→∞

fn dx

Remark C.3.1. Using the fact that these three theorems can be proven in the reverse order so that
Fatou implies monotone implies dominated, we see that they are in fact equivalent. In the usual
path to the proofs of these theorems, we do not need the fact that

Remark C.3.2. The dominated convergence theorem is really a finite measure “upstairs” thing.
Let me explain. First, one can work in the domain of f (the measure space) or the product space of
the measure space and the range (the real line), also known as the graph space. By working upstairs,
I mean working in the graph space, in the region above (or upstairs) the domain. If we do that,
we see that the region of the graph space between −g and g is finite in measure and the dominated
convergence theorem is really saying that if all your messing around is done in a constrained, finite
measure set, essentially no misbehavior can result.

Remark C.3.3. Dominated convergence is used to get other switching theorems: switching order
of differentiation and summation or differentiation and integration or integraion and summation.
We will discuss this later in this chapter.
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