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This proof is both simple – once you have the geometric outline in your
head – and complex – if you let the details hide the big picture from you.

Important Comments: You should not expect to read this quickly, nor
should you expect to read it without having a paper and pencil handy to
make sketches in your quest to understand and master the ideas here. There
is nothing in these notes that is completely new to you – i.e. you have seen all
the ideas in the book and lectures. But you most likely have not made these
ideas part of your subconscious tool set yet, so the process is still going to take
some time.

You should definitely try to master these notes before class. I
will also go over these notes, in detail, with tons of pictures, in class, so if the
struggle to master the notes overwhelms you, help is on the way!

1 The Proof in Detailed Steps

The idea is very close to what I said in class on Friday.

1. We start with a closed and bounded set E ⊂ Rn.

2. We assume we have already shown that (a) Rn is complete – that is,
that every Cauchy sequence converges to some point in the space and
(b) every bounded sequence has a convergent subsequence.

3. Assume that E ⊂
⋃∞
i=1 Ui where each of the Ui ⊂ Rn are open.

4. See the figure below for the next few steps ...
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Figure 1: The process of choosing a sequence is simple ...
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5. Now: choose x1 ∈ E ∩ (U1)
c. I.e. x1 is in E, but not in U1.

6. Next choose x2 ∈ E ∩ (U1 ∪ U2)
c. I.e. x2 is in E, but not in U1 ∪ U2.

7. ... and choose x3 ∈ E ∩ (U1 ∪ U2 ∪ U3)
c. I.e. x3 is in E, but not in

U1 ∪ U2 ∪ U3.

8. ... you see the pattern: xn ∈ E ∩ (U1 ∪ U2 ∪ · · · ∪ Un)c. I.e. xn is in E,
but not in U1 ∪ U2 ∪ · · · ∪ Un.

9. Notice that if there is ever a point where you can’t find an xk for some
k, then that means the first k − 1 open sets cover E and we are done –
we have found a finite subcover of E.

10. If we never fail to choose an xk for k = 1, 2, 3 ..., then we have chosen
an infinite sequence from E and we know that there is a subsequence
{xin}∞n=1 which converges to a point x∗ in E: {xin}∞n=1 → x∗.

11. Now we notice something: every Uk covers at most only the first k − 1
points in the sequence: {xi}k−1i=1 .

12. Now because x∗ ∈ E and the union of all the Ui’s cover E, then there
is some Um such that x∗ ∈ Um. Since Um is open this implies that for
some N <∞, the tail of the subsequence is in Um: {xin}∞n=N ⊂ Um.

13. Now we can reach a contradiction, because from Step(11) we have that
Um covers at most {xi}m−1i=1 but from Step(12) we have that Um contains
xi with i arbitrarily big.

14. That contradiction implies that we were not able to always pick an xi
for all i and so we halted the procedure and found a finite subcover.

15. ... And we are done!

2 Even More ...

Note that we can even have an uncountable cover of E and find a finite subcover
(when E is closed and bounded). This follows because, from any cover of any
set in Rn, we can choose a countable subcover. Here is the proof:

Synopsis: If we have a cover of E by the open sets: E ⊂
⋃
α∈A Uα, we know

there is a countable subcover: {Ui}∞i=1 ⊂ {Uα}α∈A and E ⊂
⋃∞
i=1 Ui. We know

this because Rn contains a set that (a) is countably infinite and (b) whose
closure is all of Rn. Here are the details ...
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1. Because the set of rational numbers Q is countable, we can use the
standard argument to show that Qn is countable. (a zigzag argument to
show that the product of two countable sets is countable: now iterate.)

2. Note That Qn is dense in Rn: given any point x ∈ Rn, there is a sequence
{qi}∞i=1 ⊂ Qn that converges to x.

3. Now since Qn is countable, the set of open balls centered on points in
Qn that have rational radius is also countable.

4. For every point e ∈ E, there is an open set Uα that contains e and
because Uα is open, there is an open ball centered on e with radius
r > 0, B(e, r) ⊂ Uα.

5. Now choose a point qe ∈ Qn such that |qe−e| < r
3

and a rational number
ke such that r

3
< ke <

2r
3

.

6. Observe that B(qe, ke) contains e and is in Uα.

7. The collection of all such balls, {B(qe, ke)}e∈E, is countably infinite at
most (because there are only a countable infinity of balls with rational
radii and centers in Qn), and together, they contain all of E.

8. Now choose one set from the open cover that contains each B(qe, ke).
Together these sets cover E and are countably infinite at most.

9. Done.
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