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Chapter 1

Preface

I begain writing these notes when the only text for the class was Fleming’s book, but now I also
use Lindstrom’s book as needed. I will keep updating and adding to these notes as we go along.

These notes will not replace Fleming’s book – it is always assumed you have read and (mostly)
understood Fleming’s book, using Lindstrom to illuminate when you need to. I use these notes as
a way to share anything I want to share in writing.

Note 1: I use Rn where Fleming uses En.
Note 2: I use my own words without necessarily telling you they come from some other set of notes
I have written – I honestly think that anti-plagiarism thing has been taken too far. It is appropriate
and only right to very carefully acknowledge when you are quoting other people’s writings/ideas,
but it is nonsensical to get excited about how I use my own writing, because, frankly, it is my own
writing and I can use it any way I like!

1
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Chapter 2

Basic notions in inner product spaces

The first chapter in Fleming is a chapter that gets you thinking about things as an analyst and
goes over some of the important tools and ideas we will use throughout the course.

2.1 Section 1.1

Sup (and Inf) It is an axiom in our system that every set in R that is bounded has a smallest
or least upper bound (also known as the supremum): if B <∞ and for every x ∈ E, x ≤ B,
there there is a least number s such that x ≤ s for all x ∈ E and if there is another t ∈ R
such that x ≤ t for all x ∈ E, then s ≤ t.

Archimedean Property If ε > 0 and x > 0, then there is a positive integer m such that x < mε.
Existence of least upper bounds can be used to prove this.

Example if x < y, there is a rational number m/k, m and k integers, such that x < m/k < y.
Proof for the case 0 < x < y. (1) There is a k ∈ Z such that 2 < k(y − x). This implies that
the gap between kx and ky is greater than 1 and there must be an integer m strictly between
them: 0 < kx < m < ky. (2) divide this result by k to get what we want, 0 < x < m/k < y.

2.2 Section 1.2

The key ideas in this section are the idea of an inner product and the idea of the norm or 2-norm
for vectors in Rn. There are also some very important inequalities: Cauchy’s inequality and the
Triangle inequality.

Proof of Cauchy’s Formula:

1. We define the norm of x to be |x| =
√
x2

1 + · · ·+ x2
n. Note that |x| =

√
x · x.

2. Note that

|x · y| ≤ |x| |y| ⇔
∣∣∣∣ x|x| · y|y|

∣∣∣∣ ≤ 1

3. As a result, we can simply prove that for all x,y such that |x| = |y| = 1, we have that
|x · y| ≤ 1.

3
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4. Next we observe that for any real numbers a,b, 0 ≤ (a± b)2 which implies that |ab| ≤ a2

2 + b2

2 .
Now we use this to prove that when |x| = |y| = 1, |x · y| ≤ 1:

5. Since |x| =
∑n

i=1 x
2
i = 1 and |x| =

∑n
i=1 x

2
i = 1.

|x · y| = |x1y1 + · · ·+ xnyn|

≤
n∑
i=1

|xiyi|

≤
n∑
i=1

(
x2
i

2
+
y2
i

2

)
= 1

Problem 4 in section 1.2 Problem 4 in section 1.2 illustrates a common use of the Cauchy (and
the more general Hölder’s) inequality: I give a different hint here than Fleming gives.

Exercise 2.2.1. Show that
∑n

i=11 |xi| ≤
√
n|x|.

1. What vector v satisfies x · v =
∑n

i=1 |xi|?
2. Apply Cauchy’s inequality to x and v.

Orthogonal: i,e when 〈x,y〉 = 0 The idea of orthogonality and orthonormal is very important:
you should sketch examples in 2 and 3 dimensions.

Exercise 2.2.2. Suppose that x, y ∈ Rn are unit (column) vectors, so the transposes of each,
xT and yT , are row vectors. Let In be the identity operator represented by the matrix with
ones down the diagonal and zeros everywhere else. Show that (In − xxT )y = y − 〈x, y〉x is
orthogonal to x. More generally, Show that In − xxT is the matrix that projects
any vector in Rn onto the n-1-dimensional subspace orthogonal to x.

2.3 Section 1.3

Key ideas:

1. Given two points x and y, αx+ (1− α)y, 0 ≤ α ≤ 1 is the line segment from x to y.

2. Let w ∈ Rn, and c ∈ R. The set {x|x ∈ Rn and w · x = c} is called a hyperplanes and it
divides Rn into two halfspaces. Note that choosing w such that |w| = 1 gets us all possible
hyperplanes.

Exercise 2.3.1. Prove it – that choosing w such that |w| = 1 gets us all possible hyperplanes.
That is, if there is a hyperplane of the form {x|x ∈ Rn and w · x = c} where |w| 6= 1, then
there is a u such that |u| = 1 and {x|x ∈ Rn and w · x = c} = {x|x ∈ Rn and u · x = b} for
some b ∈ R and u ∈ Rn, |u| = 1.

3. E is convex if x, y ∈ E ⇒ (αx+ (1− α)y) ∈ E ∀ α ∈ [0, 1]

4. A closed convex sets E equals the intersection of all half-spaces containing E.

Exercise 2.3.2. See if you can convince yourself of that fact: that closed convex sets equal
the intersection of all half-spaces containing them. (We will return to this in section 1.5)
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2.4 Section 1.4

Key ideas:

• Open balls B(x, r), Interior points, Open sets O

•
⋃
α∈AOα,

⋂n
i=1Oi,

⋃n
i=1 Ci,

⋂
α∈A Cα

• int(E), clos(E), limit points, cluter points

• ∅ ⊆ int(E) ⊆ E ⊆ clos(E) ⊆ X

• Examples

Exercise 2.4.1. If E is a nonempty open set that does not equal the whole space X, then ∅ (
int(E) = E ( clos(E) ( X. Let 0 = ⊆, and 1 = ‘=’. We can represent the inclusion relation by
(0, 1, 0, 0) – we will call this 4-tuple the inclusion string. Using subsets of X = R, see how many of
the 16 possibilities for the inclusion string (x, x, x, x) you can find using different subsets.

2.5 Section 1.5

2.5.1 Definition of Convex

A set E is convex if the line segment joining any two points in E is also in E. We can express this
in more than one way:

1. If x, y ∈ E, then the line segment between x and y is also in E

2. x, y ∈ E ⇒ (αx+ (1− α)y) ∈ E for all 0 ≤ α ≤ 1.

3. x, y ∈ E ⇒ (α(x− y) + y) ∈ E for all 0 ≤ α ≤ 1.

The last way of expressing it makes it easy to see that the analytic expression involving α is gives
us the line segment from y to x as α goes from 0 to 1, as long as you remember that x − y is the
vector from y to x.

2.5.2 Supporting Hyperplanes, Half Spaces and Close Convex Sets

If h = {x|x·w = c} is a hyperplane then there are two associated (closed) halfspaces: H = {x|x·w ≤
c} and H = {x|x · w ≥ c}. A supporting hyperplane hK of a closed convex set K is a hyperplane
that intersects K with the additional property that K is entirely contained in either one or the
other of the two halfspaces associated with hk.

Intuitively, one can see that if we rotate everything appropriately, then K will sit on and above
hK but will not stick below hK . In this case, hK is supporting K.

If K is a closed convex set, then it equals the intersection of all the closed halfspaces
containing K:

K =
⋂

H∈HK

H

where HK are all the halfspaces containing K.
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Proof.
Since every K ⊂ H for every H ∈ HK , we have that K ⊂

⋂
H∈HK H. Therefore, we simply need

to show K ⊃
⋂
H∈HK H – i.e. that if x is not in K then x 6∈

⋂
H∈HK H.

Choose any point x not in K. Since K is a closed set, there is a closest point k ∈ K and d(x, k) =
infy∈K d(x, y) > 0. (This follows from the fact d(x, y) is a continuous function in y on K and a
theorem we will meet in Chapter 2.) Now consider the hyperplane hk ≡ {y ∈ Rn|〈y−k, x−k〉 = 0}.
Clearly, k ∈ hk. Now, by a geometric argument, we prove that K ⊂ {y ∈ Rn|〈y − k, x − k〉 ≤ 0}.
This will show that x 6∈

⋂
H∈HK H.

Suppose that there is a point a ∈ K such that 〈a − k, x − k〉 > 0. Because a and k are in K
and K is convex, we have that the entire line segment between a and k are also in K. As a result,
the point 〈x− k, a−k|a−k|〉

a−k
|a−k| + k is closer to x than k is (Prove it: draw a careful picture!). That is

a contradiction. Therefore there is no point a ∈ K such that 〈a− k, x− k〉 > 0.

For every k ∈ ∂K, there is a w ∈ Sn−1 such that K ⊂ {y|〈y− k,w〉 ≤ 0}. That is, every
point in the boundary of K, ∂K, is contained in a supporting hyperplane of K.

Proof.
Since k is in the boundary of K, there is a sequence {xi}∞i=1 ⊂ Kc, such that |xi − k| →

i→∞
0. By

the proof above, for each xi ∈ Kc, there is a ki ∈ K such that |xi − ki| ≤ |xi − k| is the distance
from xi to K and K ⊂ {y|〈y− ki, xi − ki〉 ≤ 0}. Defining vi ≡ xi−ki

|xi−ki| , we have that {vi}∞i=1 ⊂ Sn−1

must have a cluster point w ∈ Sn−1. Note that

{y|〈y − ki, xi − ki〉 ≤ 0} = {y|〈y − ki,
xi − ki
|xi − ki|

〉 ≤ 0}

Suppose that p ∈ K. We have that 〈p− ki, xi−ki|xi−ki|〉 ≤ 0 for all i, ki → k, and xi−ki
|xi−ki| → w. Because

〈a, b〉 is a continuous function in a and b, this implies that 〈p − k,w〉 ≤ 0} and we conclude that
K ⊂ {y|〈y − k,w〉 ≤ 0}.

2.5.3 Convex Combinations

Suppose that x is the convex combination of {xi}mi=1 ∈ Rn and m ≥ n + 2. In other
words, suppose that x =

∑m
i=1 αixi where {xi}mi=1 ∈ Rn, m ≥ n + 2, 0 ≤ αi ≤ 1 for all i

and
∑

i αi = 1. Then there is a convex combination of at most n+ 1 of {xi}mi=1 that also
equals x.

Proof.
Define m to be the number of nonzero αi’s. We assume that at least n+ 2 of the αi’s are non-zero,
otherwise we are done. Let M be the matrix whose m columns are the n-vectors {xi}mi=1 Now add
another row of ones to get a matrix M̂ with n+ 1 rows and m columns. Since m ≥ n+ 2, M̂ has a
non-zero null vector (β1, ..., βm). By design

∑
i βi = 0 and 0 =

∑m
i=1 βixi. In fact

∑
i tβi = 0 and

0 =
∑m

i=1 tβixi for all real t. This implies that x =
∑m

i=1(αi + tβi)xi and
∑m

i=1(αi + tβi) = 1 for all
t. We can choose t small enough that at least one of the (αi + tβi) is zero and all of the (αi + tβi)
are non-negative.

Suppose that E is a set in Rn, x is a convex combination of n + 1 points from E,
and E has at most n connected components. Then there are n points in E that also
be combined in a convex combination to get x.
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Proof.
We suppose that x =

∑m
i=1 αixi where 0 ≤ αi ≤ 1 for all i and

∑
i αi = 1. We assume that we

cannot find n points in E such that x is the convex combination of those n points otherwise we are
done. This implies that 0 < αi for all i.

Suppose first we are in R2 and we have 3 points. Then the ray through x from any of those
points x1, x2, or x3 must not contain any points in E otherwise x is the combination of a point in
one of those rays and the opposite xi. Since x is also not in E, these rays, together with x partition
E into at least 3 non-empty open subsets. See figure 2.1

x3

x2
x1

x

Figure 2.1: Proof in the case n = 2

Suppose that we are in Rn and n > 2. The argument we just used generalizes to any dimension,
but visualizing takes a bit of effort.

1. First we note that the n + 1 points define a non-degenerate simplex S (i.e. a simplex with
nonempty interior) in Rn. Otherwise the n+1 points are contained in an n-1 dimensional
plane and our previous argument gives us the result we are trying to prove.

2. This means that all subsimplices are non-degenerate as well.

3. The n+ 1 points {xi}n+1
i=1 have the following property: if we chose one of these points xk and

we consider the complement Xk ≡ {xi}i 6=k, then the line through xk and x hits the interior
of the simplex Sk generated by Xk.

4. Now generate the n+ 1 cones Ck with vertex x, consisting of all the infinite rays starting at
x, which contain the antipodal points to points in Sk. The boundary of Ck are all the rays
whose antipodal points are in a subsimplex of dimension less than or equal to n− 1 plus the
vertex. If the vertex x is in E, we are done. If any point in E is in a ray that is antipodal
to a subsimplex of dimension n − 1 or less, then x is the convex combination of at most n
points in E.

5. We have that xk ∈ Ck for all k.

6. Therefore, if there is no way to express x as a convex combination of n or fewer points in E,
then E has at least n+ 1 connected components.
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Chapter 3

Topology in Metric spaces

I am following the text fairly closely, though I am often giving different proofs and examples.

3.1 Functions

Learn to think about various sets in connection to functions and their properties:

• If f : Rn → Rk, the set {(x, y)|y = f(x)} ⊂ Rn+k = Rn × Rk is the graph of a function.

• inverse image of a set F ⊂ Rk in the range of f : Rn → Rk, is the set E = f−1(F ).

• Inverse images of any f preserves unions and intersections of subsets of the co-domain:

* f−1(A ∪B) = f−1(A) ∪ f−1(B)

* f−1(A ∩B) = f−1(A) ∩ f−1(B)

even though, if f is not one to one, it is always the case that there are sets A and B in the
domain of f such that:

* f(A ∪B) 6= f(A) ∪ f(B)

* f(A ∩B) 6= f(A) ∩ f(B)

3.2 Limits and Continuity of Transformations

There are three ideas here:

• if xi is a sequence of values in Rn, then if there is a point x0 ∈ Rn such that the sequence
eventually enters any small ball about x0 and never leaves that ball, we say that x0 is the
limit of the sequence. More succinctly, if we choose any ε > 0 (no matter how small!), there
is an Nε such that xi ∈ B(x0, ε) whenever i > Nε.

9
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B(x∗, ε)
x1

x∗

x3

x2
xNε+1xNε

• if x is a continuous variable (like a point in Rn), f : Rn → Rk and x0 ∈ Rn, then we say that
f(x) → y0 ∈ Rk as x → x0 if, no matter how small we choose ε > 0, we can chose η > 0 so
that x ∈ B(x0, η) implies that f(x) ∈ B(y0, ε)

• If, no matter how small we choose ε > 0, we can chose η > 0 so that x ∈ B(x0, η) implies
that f(x) ∈ B(f(x0), ε), we say that f is continuous at x0. If f is continuous at every
point in its domain, we simply say that f is continuous or f is continuous everywhere.

B(f(x0), ε)

B(x0, η)

f(B(x0, η))

x0

f(x0)

3.3 Sequences in Rn

I recommend Burn’s book [2] for a nice, problem driven exploration of sequences. (Earlier editions
of he book are fine.)

• As mentioned in the previous section, a sequence {xi}∞i=1 ⊂ Rk converges to x∗ ∈ Rk if for
any ε > 0 there is an Nε such that i > Nε implies that |xi − x∗| < ε.

• A sequence is Cauchy if for any ε > 0 there is an Nε such that m,n > Nε implies that
|xn − xm| < ε.

• In the text, it is shown that a sequence in Rk converges if and only if it is a Cauchy Sequence.
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• The infinite sum of a sequence
∑∞

i=1 xi (also called a series) is defined to be the limit f the
partial sums limm→∞ Sm where Sm ≡

∑m
i=1 xi.

• Define Snm ≡
∑n

i=m xi. Then the m-tail of an infinite sum
∑∞

i=1 xi is the sum Tm =
∑∞

i=m xi ≡
limn→∞ S

n
m where Snm ≡

∑n
i=m xi.

• An infinite sum/series
∑∞

i=1 xi = S if the sequence Sm converges to S. An infinite sum∑∞
i=1 xi converges to some point in Rk if |Tm| → 0. Prove: |Tm| → 0 if and only if Sm is a

Cauchy Sequence.

• A series
∑∞

i=1 xi is absolutely convergent if
∑∞

i=1 |xi| is finite or equivalently
∑∞

i=1 |xi| is
convergent or equivalently

∑∞
i=1 |xi| < infty. Absolutely convergent implies convergent, but

convergent does not imply absolutely convergent.

•
∑∞

i=0 x
i = 1

1−x for any x ∈ R such that −1 < x < 1.

• Prove: |xi| < yi and
∑∞

i=1 yi <∞, ⇒
∑∞

i=1 xi is absolutely convergent.

• The previous bullet can be used to prove convergence by comparing series with known series
and even integral.

• Show: since we know that
∫∞

1
1
xpdx <∞ when p > 1, this implies that

∑∞
1

1
ip <∞.

• Show that
∑∞

i=1 ai is convergent if limi→∞

∣∣∣ai+1

ai

∣∣∣ < ρ < 1. Hint: compare with
∑

k ρ
k. Note:

I am abbreviating
∑∞

k=1 ρ
k by

∑
k ρ

k.

Exercise 3.3.1. Show that if

1. X ≡ {xi}∞i=1 ⊂ R

2. |X| =∞: i.e. there are an infinite number of points in X (unlike, e.g., the infinite sequence
xi = (−1)i which has only two points, −1 and 1 in it.)

3. x̂ ≡ inf{x | x ∈ X},

4. and x̂ 6∈ X: in other words x̂ 6= xi for any i,

then there is a subsequence of X, xik converging to x̂: i.e

lim
k→∞

xik = x̂

Solution to Exercise 3.3.1:
We will do this in steps:

1. Draw examples to enable you to go between the pictures behind the proof and the written
proof: this will take some effort, but you will be rewarded with understanding. See as an
example, Figure 3.1 illustrating Step (5).

2. First: note that for every ε > 0, there is some element of the sequence xp such that x̂ < xp <
x̂+ ε. Otherwise, there would be some ε > 0 for which this is false, impling that x̂+ ε ≤ xi
for all i. And that implies that x̂ is NOT the greatst lower bound for X!
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3. At this point we are almost there, we just needed a nicely ordered sequence of such points.
That is what the rest of the proof does: it extracts the subsequence we need, using Step (2)
several times.

4. Define Hj = {xi}ji=1. These sets are just the first j elements for the sequence, j = 1, 2, 3, ...

5. Define mj = {minimum element of Hj}. Notice that mj is nonincreasing.

6. Define i1 = 1. Since x̂ 6= xi for any i, this implies that ε ≡ xi1 − x̂ > 0. Thus, by Step (2),
there will be a smallest j < ∞, where mj < i1. We define i2 to be that j and note that
xi2 = mi2 . (Why? Because it is at i2 that the minumum jups down, implying that it was the
i2th element xi2 that forced the minimum down.)

7. repeating this step, we get that ik+1 is the smallest j > ik such that mj < xik . Again
xik+1

= mik+1

8. Again, using Step (2), we know that mj ’s converge to x̂. (Otherwise mi > x̂+ ε for all i and
some ε > 0. But Step (2) says that for some p, xp < x̂ + ε, which tells us that mp < x̂ + ε,
which contradicts the first inequality,mi > x̂+ ε for all i. Thus the mj ’s converge to x̂.)

9. So we know that the xik ’s, which are all distinct by design, converge monotonically to x̂

*

*
*

*
*
*

*

*
*

* * *
* * *

*
*

* = xi’s

= mi’s

Figure 3.1: Example illustrating the mj’s.

3.4 Bolzano-Weierstrass Theorem

Proof 1: Here is my outline of a somewhat different path to the BW Theorem.

Part I Suppose that E is a bounded infinite set in R. Let s0 be the supremum of E. If s0 is an
accumulation point of E we are done. Otherwise s0 is an isolated point in E, in which case
we define E1 = E{s0} and define s1 to be the supremum of E1. If this process stops in a
finite number of steps, we have found an accumulation point. If it continues on an infinite
number of times, each of the si are distinct, strictly decreasing elements in E, bounded below
because E is a bounded set. Therefore the infimum of {si}∞i=1 is an accumulation point of
{si}∞i=1 and therefore of E.
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Part II This can then be extended to Rn by going coordinate by coordinate.

• Suppose that E is an infinite bounded set in Rn. Let {xi}∞i=1 be any infinite sequence
of distinct points in E. Because E is infinite, we know we can choose such an infinite
sequence. Let xi = (x1

i , x
2
i , x

3
i , ..., x

n
i ). We now note that while each of the xi are

distinct, it might not be the case that each of the xi are distinct. As a result, for this
step, we introduce the notion of accumulation point for sequences to: a point y∗ is
an accumulation point of a sequence {yi} if for every ε > 0, |y∗− yi| < ε for an infinite
number of the i’s. We note that the argument for part one goes through exactly as
before.

• Now use the fact that the first step of this proof tells us that {x1
i }∞i=1 ⊂ R has an

accumulation point and therefore a subsequence limk→∞ x
1
ik
→ x̂1.

• Now define xk = xik . Since all the xi’s are distinct (in Rn) so are the xk’s. We have
that the first coordinate of the xk’s converges to x̂1.

• Now repeat, looking at the second coordinate {x2
k}∞k=1 ⊂ R. After n iterations of this

procedure, we end up with x̂ = (x̂1, x̂2, ..., x̂n), an accumulation point of E.

Proof 2: Here is something closer to the book,

Infinite Pigeon Hole Principle The set we start, E0, is bounded and infinite – i.e. there are
an infinite number of distinct points in the set. We want to conclude that there is a point x∗

that is an accumulation point of E0.

1. Any bounded set E0 ⊂ Rn can be enclosed in some closed cube of side length R <∞,
as long as R is big enough. Label this cube C0.

2. If we cut the cube in half along each coordinate direction, we get 2n closed subcubes,
each having edge-length R

2 .

3. Suppose that each of the subcubes had only a finite number of points from E0 in them
and say that the largest number contained in any of them is N . Then there would be at
most 2nN in E. That is a contradition, so it must be that at least one of the subcubes
of edgelength R

2 has an infinite number of points in it. Label this subcube C1

4. Define E1 = C1 ∩ E0.

5. Repeat: subdivide C1 to get 2n cubes of edge length R
22

, at least one of which has a
infinite number of points from E1 in it. Label that cube C2 and E2 = C2 ∩ E1.

6. Continuing this way we get a nested sequence of closed cubes with edge lengths

{R, R
2
,
R

22
,
R

23
,
R

R4
, ...}

.

7. We know that an infinite sequence of closed sets whose diameters are converging to zero
has a non-empty intersection consisting of exactly one point. Lets call that point c∗:

c∗ ≡
∞⋂
i=1

Ci

.
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C1

C2

C3

C4

Cauchy Sequences Converge Strictly speaking, we have already shown the BW theorem in the
book since c∗ satisfies the property that every neighborhood of c∗ contains an infinite number
of points from E0. Why? Because if you choose the neighborhood B(c∗, ε), then, as long as I
choose Ck, where

√
n R

2k
< ε, I know that Ck ⊂ B(c∗, ε) and by construction, |Ck ∩E0| =∞,

where |A| for a set A is the number of points in the set A. (This follows from the facts that
c∗ is in Ci for all i and diam(Ci) =

√
nR

2i
.)

But we can also construct a sequence {xi}∞i=1 of distinct points in E0 that converges to c∗.
We do that now.

1. pick any point in E0 and label it x0, now chose any point in E1 \ {x0} and label it x1.

2. Keep doing this to get, at the (k+1)th step, xk ∈ Ek \ {x0, x1, ..., xk−1}.

3. Notice that we can always do that since all the Ei’s are infinite and removing at most
a finite number of points does not create an empty set!

4. Notice that xi ∈ Ei ⊂ Ci. This implies that {xi}∞i=0 is a Cauchy sequence with a limit
x∗.

5. Since the tail of {xi}∞i=0 is in every Ci, and each of these are closed, x∗ ∈ Ci for all i.
This implies that x∗ ∈

⋂∞
i=0Ci = c∗.

6. Therefore xi → c∗.

3.5 Relative Neighborhoods, Continuous Transforma-

tions



3.6. TOPOLOGICAL SPACES 15

3.6 Topological Spaces

3.7 Connectedness

3.8 Compactness

Here is a slightly different proof of the fact that if E ⊂ Rn is closed and bounded, then every open
cover of E has a finite subcover, i.e. E is compact.

1. Suppose there is no finite subcover of the open cover U .

2. First note that the collection of open balls with rational radius, centered on points in Rn
which have rational coordinates, is a countable collection. (Prove it!) Name this collection
O = {Oi}∞i=1

3. If U is an open cover of E, then for every point x ∈ E, there is an open set U ∈ U containing
x.

4. There is some open ball with radius rx, such that B(x, rx) ⊂ U .

5. There is a point p ∈ Rn with rational coordinates such that |p− x| < rx
4 .

6. Choose a rational number q, rx
4 < q < rx

2 . Observe that

x ∈ B(p, q) ⊂ B(x, rx) ⊂ U

and that B(p, q) = Oi ∈ O for some i. Restating, we have that for any x ∈ E there is a
U ∈ U and an Oi ∈ O such that:

x ∈ Oi ⊂ U ∈ U .

7. Let Ô be the subset of O containing all the Oi’s needed in the previous step to cover all the
x’s in E.

8. For every Oi in Ô which is a subset of some U ∈ U , choose one element U ∈ U that contains
Oi and label it Ui. Call this subcollection of U , Û , and note that Û is countable and infinite,
so we can relabel Û to get Û = {Ui}Ni=1 with N ≤ ∞.

9. By step 6 we have that E ⊂
⋃
Ui∈Û Ui. This implies that N =∞.

10. Because there is no finite subcover of U , there is no finite subcover of Û .

11. Define Cm = E \ (
⋃m
i=1 Ui).

12. Since E is closed, E ⊂ B(0, R) for some R < ∞, and the Ui are open, we have that each of
the Cm are closed, C1 ⊃ C2 ⊃ C3 ⊃ · · · and all the Ci ⊂ B(0, R).

13. Note that none of the Ci are empty (otherwise
⋃m
i=1 Ui would cover E and E would have a

finite subcover), yet
⋂∞
i=1Ci = ∅, contradicting corollary 2 on page 45 pf Fleming.

14. Thus there must be a finite subset of elements of U that also cover E.
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3.9 Metric Spaces

A metric space is a set X with a distance function d(·, ·) that assigns to the pair of points x, y ∈ X
a distance d(x, y) such that:

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X

3. d(x, z) = d(x, y) + d(y, z) for all x, y, z ∈ X

Note that Rn with the distance d(x, y) = |x− y| is a metric space.

While topological spaces can be very wild, metric spaces are much better behaved. But there
can be strangeness that metric spaces exhibit when they do not have the extra structure that Rn
has. And Rn has a great deal more structure. For example:

1. Rn is a vector space, the points in Rn are vectors so we can add them and multiply them
by scalars (real numbers).

2. This allows us to have linear maps, which are simple, and to talk about functions which
are well approximated by those liner maps (differentiable functions).

3. in Rn, the distance comes from a norm which has a special relation to the vector space
structure.

4. in Rn, the norm comes from an inner product which allows us to talk about angles and
orthogonality.

As a result, some of the intuition you have for spaces is due to those really nice features, and
when you want to know what is true in metric spaces, you have to shed some of those preconceptions.

For example, in a metric space with no extra structure, it makes no sense to ask about directions
because there are no directions. On the other hand, a straight line in Rn is the shortest distance
between any two points lying on that straight line. So we can attempt to define straight lines by
thinking about shortest paths between two points in X.

Definition 3.9.1 (paths in metric spaces). A path in a metric space from a ∈ X to b ∈ X is a
continuous map from γ : [0, 1] ⊂ R→ X such that γ(0) = a and γ(1) = b.

Definition 3.9.2 (lengths of paths in metric spaces). let γ be a path in a metric space. The length
of γ, l(γ), is supP

∑N−1
i=0 d(γ(xi, xi+1), where the P ranges over all partitions of [0, 1]: x0 = a <

x1 < x2 < · · · < xN−1 < xN = b with N <∞.

Definition 3.9.3 (geodesics in metric spaces). Suppose that X is a path connected space. Then
the geodesic distance from a to b is dg(a, b) ≡ infγ∈Γl(γ) where Γ is the collection of all paths that
start at a and go to b.

There of course are questions like, “Is there a path from a to b whose length equals dg(a, b)?”.
When the metric space X is complete (i.e. when every Cauchy sequence in X converges to a point
in X) and the space is locally compact (every point in X has an open neighborhood whose closure
is compact), it turns out that there is always a geodesic connecting any two points in the space.
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Remark 3.9.1 (path metric spaces). To be a bit more efficient, we should not worry about con-
nectedness or path connectedness and simply define the distance from a to b to be infinite if either
(1) there is not path from a to b or (2) the length of all paths from a to b is infinite.

There is a very nice book by Burago, Burago and Ivanov titled “A Course in Metric Geometry”
which I recommend very highly. It is not fast reading, but it is very interesting and is aimed at
those that want to learn this on their own. You can find a pdf here:
http://www.math.psu.edu/petrunin/papers/alexandrov/bbi.pdf. If you want to study this, you
should buy the hard copy. I recommend using the pdf to decide. See also
http://www.pdmi.ras.ru/ svivanov/papers/bbi-errata.pdf.

Exercise 3.9.1. Define the g-length of a path between two points x, y in R2 to be the infimum of
the lengths of paths between x and y where the length of a path γ : [0, 1] → R2 is defined to be∫ 1

0 g(γ(t))|γ̇(t)| dt. Describe the geodesics (shortest paths) when:

1) g = χB(0,1).

2) g = χR1\B(0,1).

3) g = χE where E is the union of three disjoint closed and bounded sets.

3.10 Spaces of Continuous functions

In this section, the main idea is the “uniform norm” and the fact that this norm in spaces of
functions gives us completeness for both the space of bounded functions on S, B(S) and the space
of continuous and bounded functions on S, C(S).

The ideas are simple:

1. The uniform norm on functions from S → Rk:

||f || ≡ sup
x∈S
|f(x)|

is the main ideas here – it makes everything work for us.

2. If fi is a Cauchy sequence in the uniform norm, then we know that for every x ∈ S, the
sequence {fi(x)}∞i=1 ⊂ Rk is a Cauchy Sequence converging to some f∗(x) ∈ Rk.

3. When each of the functions {fi}∞i=1 is bounded, the function f∗ is also bounded.

4. When each of the functions {fi}∞i=1 is bounded and continuous, then the limit f∗ is also
bounded and continuous.

5. Note that{fi}∞i=1 is a sequence of functions from S to Rk, while for any x ∈ S, {fi(x)}∞i=1 is
a sequence in Rk.

Understanding why 1-5 are true one is of the missions in this section. Another goal is to get
you used to thinking of vector spaces of functions and closed subspaces of function vector spaces.

Exercise 3.10.1. Extra Credit: Show that the set of all 3rd order polynomials is a vector space
on the set S = [0, 1] ⊂ R is a complete subspace of C(S), bounded continuous functions. In other
words, show that a Cauchy sequence (in the uniform norm) of functions of the form

{ai + bix+ cix
2 + dix

3}∞i=1

http://www.math.psu.edu/petrunin/papers/alexandrov/bbi.pdf
http://www.pdmi.ras.ru/~svivanov/papers/bbi-errata.pdf
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converge to some other function of the form f∗(x) = a∗ + b∗x+ c∗x2 + d∗x3.
Hint:

1. Show that

M ≡


1 x1 x2

1 x3
1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

1 x4 x2
4 x3

4


where the xi ∈ [0, 1] are all distinct, is a nonsingular matrix – there are no, nontrivial null
vectors.

2. This implies that the singular values of M are all non-zero. let σ4 be the smallest singular
value.

3. If v ≡ (a, b, c, d) and |v| > δ then |Mv| > δσ4.

4. Show that if ||f − g|| < ε then |v| = |(a, b, c, d)| < 2ε
σ4

.

5. Use this to show that if ||fi − fj || < ε then,

|(ai − aj , bi − bj , ci − cj , di − dj)| <
2ε

σ4
.

6. Show that if |(ai − aj , bi − bj , ci − cj , di − dj)| < ε then ||fi − fj || < 4ε.

7. Conclude that {fi}∞i=1 is Cauchy if and only if {(ai, bi, ci, di)}∞i=1 is Cauchy, that

(a∗, b∗, c∗, d∗) ≡ lim
i→∞

(ai, bi, ci, di)

exists and |(ai − a∗, bi − b∗, ci − c∗, di − d∗)| → 0 implies that ||fi − f∗|| → 0.

3.11 Noneuclidean Norms on Rn

You know the Euclidean norm in Rn: |x| =
√
x2

1 + x2
2 + · · ·+ x2

n. Any norm in Rn that is not this
norm is called a non-Euclidean norm. The two most frequently used non-Euclidean norms are the
L1 and L∞ norms,

|x|1 ≡
n∑
i=1

|xi|

and

|x|∞ ≡ sup
i∈{1,2,··· ,n}

|xi|.

Actually though there are an infinite number of non-Euclidean norms – one for every convex
subset of Rn that is also symmetric with respect to the origin:

Definition 3.11.1. E is symmetric with respect to the origin if x ∈ E implies that −x ∈ E.
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Exercise 3.11.1. Extra Credit: See if you can find a way to create a one-to-one correspondence
between origin symmetric, convex, compact subsets, of Rn having non-empty interior and norms in
Rn. Hint: Let |x|2 denote the Euclidean norm. For any v ∈ Rn such that |v|2 6= 0, define the ray
Rv ≡ {x ∈ Rn|x = tv, 0 < t <∞}. Notice that

1.
Rn =

⋃
v∈∂B(0,1)

Rv ∪ {0},

2. if we know a norm |x| at one point of a ray Rv you know it at every point of Rv and

3. for any α ∈ [0, 1],
|αx+ (1− α)y| ≤ α|x|+ (1− α)|y|.
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Chapter 4

Differentiation

This chapter is a somewhat gentle, but determined introduction to differentiation from the per-
spective of a geometric analyst.

4.1 Directional and Partial Derivatives

Pretty much what you have seen before.

4.2 Linear Spaces and Functions

This section is a reviews linear functions because derivatives are, in fact just linear functions which
approximate the function we are differentiating. So you need to have an instinctive grasp of linear
maps. And thus, there is an entire (though short) section reviewing them.

Remark 4.2.1 (Dual Spaces). You are already aware that the dual space of Rn looks a whole lot
like Rn. In fact, if you think of Rn as the space of column vectors of length n, then the dual space
is the space of row vectors of length n (alternatively, it is the space of 1 × n matrices). This is
coincidental: not all dual spaces V ∗ look just like the original space V . We now give an example
of a case in which the dual space looks very different.

Example 4.2.1 (a dual space V ∗ can look different than V ). We begin with a sequence of definitions
that you should try to grasp intuitively. Think about them, draw some pictures, etc.

Measures: functions µ which map any subset of a space X to non-negative real numbers or ∞.
They must also satisfy rules like µ(∪iAi) ≤

∑
i µ(Ai) and µ(∅) = 0. This is often called an

outer measure. We will often refer to the value µ(A) as the volume of A or measure of A.

Measurable sets: sets E such that for all A ⊂ X, µ(A) = µ(A ∩ E) + µ(A ∩ Ec). These are the
only sets we really pay attention to, in order to avoid things like the Banach-Tarski Paradox.

Radon measures: are measures (1) that assign finite volumes to compact sets, (2) such that we
can approximate the measure or volume of any set E by the measures of open sets containing
E and by the measure of closed sets contained in E, and (3) such that the class of measurable
sets includes all open sets in Rn.

21
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Signed Radon Measure: a measure µ that can be expressed as µ(A) = µp(A)−µn(A), where µp
and µn are Radon measures.

Compactly Supported Functions: f is compactly supported if {x | f(x) 6= 0} ⊂ B(0, R) for
some R < ∞. More precisely, the closure of {x | f(x) 6= 0}, called the support of f , is a
compact set. In this case, we say that f has compact support.

The space Cc(Rn;R): Let Cc(Rn;R) ≡ {f : Rn → R | f is continuous, with compact support}

The result: it turns out that the set of continuous linear functionals on Cc(Rn;R) – the dual space
of Cc(Rn;R) – is the set of signed Radon Measures on Rn. Every continuous linear functional
L ∈ (Cc(Rn;R))∗ is given by L(f) ≡

∫
fdµ for some signed radon measure µ.

The moral of the story: The measures in (Cc(Rn;R))∗ do not look at all like the functions in
Cc(Rn;R)! Thus, even though in vector spaces like Rn the dual space is essentially the same
as Rn, this is not always the case!

Note that, in our case, the precise definition of continuous linear functional is that for every compact
set K, then there is a CK such that L(f) ≤ CK |f |sup for all f such that support of f is in K, where
|f |sup is the sup-norm of f , i.e. |f |sup ≡ maxx∈Rn |f(x)|.

Remark 4.2.2 (Inner Product Spaces are Nicer). If you are in a Hilbert space - a complete, normed
vector space where your norm comes from an inner product

|x| =
√
〈x, x〉,

then it is the case that your space and its dual are essentially the same: there is an isometric iso-
mophism that connects them. That is as normed spaces, the space and its dual are indistinguishable.
This is the message of the Riesz Representation Theorem that is first encountered in more advanced
analysis classes: for any w ∈ H∗, where H is a Hilbert space, there is a vector vw ∈ H such that
w(x) = 〈vw, x〉 for all x ∈ H.

4.3 Differentiable Functions

Here we see that a function f : Rn → Rm is differentiable at x ∈ Rn if it is well approximated at x
by a linear function:

f(x+ h) = f(x) + Lx(h) + g(h)

and

lim
|h|→0

|g(h)|
|h|

= 0.

In other words (∆xf)(h) ≡ f(x + h) − f(x) is well approximated by Lx(h), where Lx is a linear
function from Rn to Rm:

f(x+ h)− f(x) = Lx(h) + g(h)

or equivalently

lim
|h|→0

(f(x+ h)− f(x))− Lx(h)

|h|
→ 0.

There is a geometric version of this: f is differentiable if there is a linear function Lx such
that the graph of (∆xf)(h) and the graph of Lx(h) can be contained in cones that can be made as
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narrow as you like, as long as you are willing to zoom into the point (x, f(x)) ∈ Rn+m enough. We
can see this more precisely without much trouble.

1. For h ∈ Rn, (x̂, f(x̂)) + (h, L(h)) is a point on the shifted linear subspace of Rn+m that
approximates the graph of f , {(x+ h, f(x+ h)) | x ∈ Rn}.

2. The error vector (0, g(h)), has norm |g(h)| ≤ α(|h|)|h| where

α(s) ≡ sup
{v||v|≤s}

|g(v)|
|v|

.

We note that α(s)→ 0 monotonically as s→ 0.

3. This says that the point (x, f(x)) = (x̂ + h, f(x̂ + h)) is in the ball centered at Ph ≡ (x̂ +
h, f(x̂) + L(h)) with radius |g(h)| ≤ α(|h|)|h|.

4. Choose an ε > 0. Let δ be any δ that makes α(δ) ≤ ε true. Then for any h ∈ B(0, δ) we have
that (x̂+ h, f(x̂+ h)) ∈ B(Ph, ε|h|).

5. Let x ∈ Rk, T be a linear subspace of Rk, and θ < π
2 . Define the cone about T , with vertex

at x, and angle θ to be:

Ck(x, T, θ) ≡ {y ∈ Rk| y − x
|y − x|

· v − x
|v − x|

≥ cos(θ) for some v ∈ T + x}

6. The union of the balls in Step 4 is a subset of Cn+m((x̂, f(x̂)), T(x̂,f(x̂)), 2 arcsin(ε)). NOTE:
we could do even better since the distance of the Ph from the vertex of the cone is larger than
|h|, implying that a cone that is skinnier in some places would also work. But the statement
is true as it stands.

7. Define
Cyl(x̂, δ) = B(x̂, δ)× Rm ⊂ Rn+m.

8. We conclude that

{(x, y) ∈ Rn+m|y = f(x)} ∩ Cyl(x̂, δ) ⊂ Cn+m

(
(x̂, f(x̂)), T(x̂,f(x̂)), 2 arcsin(ε)

)
∩ Cyl(x̂, δ).

9. One can use what we have derived above to get a slightly different statement: for any ε > 0
and for any point (x, f(x)) in the graph of f , Gf ≡ {(x, y)|x ∈ Rn, y = f(x)}, where f is
differentiable, because B((x, f(x)), δ) ⊂ Cyl(x, δ), we can conclude that

B((x, f(x)), δ) ∩Gf ⊂ B((x, f(x)), δ) ∩ Cn+m((x, f(x)), T(x,f(x)), 2 arcsin(ε)))

where again, δ has been chosen so that α(δ) ≤ ε.

Figures 4.1 – 4.4 illustrate this. The first figure shows what happens in the simplest case of
f : R1 → R1 while the last three illustrate the case of f : R2 → R1.

Exercise 4.3.1. Suppose that g : R → R and f : R → R are differentiable at x0. Use the fact
that differentiability of a function c(x) is equivalent to the existence of a scalar a = dc

dx such that
c(x0 + h) = c(x0) + ah+ e(h) where the function e(h) ∼ o(h) (i.e. e(h) is “little o of h”), to prove
that fg is differentiable at x0. (Note: your proof will end up establishing the product rule.
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h such that |h| ≤ δ

θ = 2 arcsin(ε)

hĥ

|h| = δ

Figure 4.1: One dimensional case: Here the vertical axis is (∆xf)(h) = f(x + h) − f(x)
and the horizontal axis is the h axis. The cone (in red), centered on the linear approximation
to the graph (black line), that contains the graph of the function (in blue) can be made
as small as we like by choosing δ small enough that α(δ) is as small as we like. But since
sin(θ/2) = α(δ) ≤ ε implies that θ ≤ 2 arcsin(ε) and lims→0 arcsin(s) = 0, we get that we
can make the angle as small as we like by choosing ε small enough.

h1

h2

(∆xf)(h) = f((x̂1, x̂2) + (h1, h2))− f(x̂1, x̂2)

Tangent plane at (x̂1, x̂2)

Figure 4.2: higher dimensional case: Here a function f mapping from R2 to R is depicted.
The point at which the linear approximation is being calculated is x̂ = (x̂1, x̂2).
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h2

h1

h2

(∆xf)(h) = f((x̂1, x̂2) + (h1, h2))− f(x̂1, x̂2)

Tangent plane at (x̂1, x̂2)

Figure 4.3: higher dimensional case: Zooming in a bit. The red ball in the (h1, h2)-plane
projects to the green ellipsoid in the tangent plane.

Cone with angle θ = 2 arcsin(α(ε))

Graph of Linear Approximation

Graph of f

Ball of radius δα(δ)

Ball of radius vα(δ) where |v| < δ.

Vector in tangent plane v from cone apex to center of ball of radius |v|α(δ)

Figure 4.4: higher dimensional case: The cone that contains the graph of L(h) + f(x̂)
and the graph of f .
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4.4 Functions of Class Cq

A function that is continuous and differentiable everywhere satisfies the mean value theorem:

Theorem 4.4.1 (Mean Value Theorem). Let f : R → R be continuous and differentiable every-
where. Suppose that a < b. Then there is a point c ∈ (a, b) such that:

f ′(c) =
f(b)− f(a)

(b− a)

Since we have gone over the proof in class, and there is a proof you have read in the appendix
(A.2), I won’t go over the proof again here. Instead, I will present another result that does
not require differentiability, only continuity. First though, we define upper supporting and lower
supporting :

Definition 4.4.1. Suppose that f : [a, b] → R. We say that the line y = f(c) + α(x − c) is an
upper supporting line if f(c) + α(x− c) ≥ f(x) for all x ∈ [a, b] and some c ∈ [a, b]. Likewise, we
say the line y = f(c) + α(x− c) is lower supporting if f(c) + α(x− c) ≤ f(x) for all x ∈ [a, b] and
some c ∈ [a, b].

Theorem 4.4.2. Suppose that a < b and that f : R→ R continuous for x ∈ [a, b]. Then there are
points c1, c2 ∈ [a, b] such that:

1. y = f(c1) +
[
f(b)−f(a)

b−a

]
(x− c1) is lower supporting

2. y = f(c2) +
[
f(b)−f(a)

b−a

]
(x− c2) is upper supporting

Proof. The idea of the proof is very similar to the proof of the usual mean value theorem.

1. Suppose that g(a) = g(b), a < b. Since g is continuous, g attains a maximum and minimum
values, M and m, on the compact set [a, b].

2. Define c1 to be any point such that f(c1) = m and c2 to be any point such that f(c2) = M .

3. Note that the lines y = g(c1) + 0(x − c1) and y = g(c2) + 0(x − c2) are (respectively) lower
and upper supporting lines for f in [a, b]

4. Define g(x) = f(x)−
[
f(b)−f(a)

b−a

]
x.

5. Note that g(a) = g(b) and thus there are points c1 and c2 in [a, b] such that g(c1)+0(x−c1) ≤
g(x) for all x ∈ [a, b] and g(c2) + 0(x− c2) ≥ g(x) for all x ∈ [a, b].

6. Since g(x) = f(x) −
[
f(b)−f(a)

b−a

]
x, those inequalities – g(c1) + 0(x − c1) ≤ g(x) and g(c2) +

0(x− c2) ≥ g(x) – translate into the inequalities we started out to prove.
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4.5 Local Extrema

When the determinant of the second order derivative matrix at x0 is non-zero, the local behavior
of functions f : Rn → R is determined by the first and second derivatives at x0. In this section, we
explore a few ways to prove this. We begin by assuming f has more derivatives than we actually
end up needing.

Assuming that a function f : Rn → R has bounded 3rd derivatives, we can show that a non-
singular Hessian (the matrix of second derivatives) determines the behavior of the function in the
neighborhood of a critical point – a point where the derivative ∇f is 0. (I showed this in class on
Monday November 28.)

Some notation:

x, x0 = points in Rn
h = (h1, h2, ..., hn), a difference vector in Rn

fi = ∂f
∂xi

∇f = (f1, f2, ..., fn) the gradient vector of f

fi,j ≡ ∂2f
∂xj∂xi

, the second order partial derivatives of f

fi,j(x) = the second order partial derivative evaluated at x
Q(x, ) = the matrix M = M(x) where mi,j = fi,j(x)
Q(x, h) ≡ 〈h,M(x)h〉 =

∑n
i,j=1 fi,j(x)hihj is the quadratic form containing

the second order information about f at the point x

fi,j,k ≡ ∂3f
∂xk∂xj∂xi

, the third order partial derivatives of f

Now:

1. Symmetric matrices are diagonalizable by an orthogonal change of basis that is generated by
the eigenbasis.

2. Therefore, choosing a point x0 to study the function f at, we can change the basis so that
the matrix M(x0) is diagonal. I.e.

M(x0) =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

...
0 0 0 . . . λn


where the λi are the eigenvalues of M(x0).

3. We conclude that

Q(x, h) = 〈h,M(x)h〉 =
n∑
i=1

λi(h
i)2

4. |hi| ≤ |h| for all i.

5. if we assume that λi > 0 for all i, then λi > α > 0 for all i for some α > 0. This implies that
Q(x, h) > α|h|2
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6. Choosing an x0 where ∇f(x0) = 0, shifting the coordinate system by (x0, f(x0)) so that we
now have that f(0) = 0, and rotating the basis (changing the basis using the eigenbasis of
M(x0)), we get that the Taylor series expansion for f at the point 0 is:

f(0 + h) =
1

2
Q(0, h) +

1

6

n∑
i,j,k=1

fi.j.k(c)h
ihjhk

where c is a point on the line segment between 0 and h.

7. Now, since we are assuming that the third order derivatives are bounded in a neighborhood
of 0 (x0 before the shift) by some constant K, we can bound the remainder term:

1

6

n∑
i,j,k=1

fi,j,k(c)h
ihjhk ≤ 1

6
n3K|h|3 = C|h|3

where 0 < C <∞.

8. We therefore conclude that if all the eigenvalues of the second order matrix are positive at 0
– in Fleming’s notation Q(0, ) > 0 – we have that in some neighborhood of 0

f(0 + h) ≥ α

2
|h|2 − C|h|3

.

9. We conclude that 0 ( i.e. x0) is a local minimum of f . (Use item number 8 to prove this!)

Exercise 4.5.1. Suppose that f has bounded third partial derivatives in some neighborhood of
the origin. Show that if the eigenvalues of Q(x0, ) = M(x0) are all negative, then x0 is a local
maximum.

4.5.1 Assuming only that f is in C2

Fleming approaches this problem a bit differently, requiring only that the function to has continuous
partial derivatives up to order 2 – i.e. f ∈ C2. Let ∂B(0, 1) ≡ {h | |h| = 1}. We need the following
results:

Lemma 4.5.1. H1(x) ≡ minh∈∂B(0,1)

∑
i,j fi,j(x)hihj is a continuous function of x.

Proof. Suppose that H1(x) is not continuous. Then we can find a sequence of xk → x∗ such that
H1(x∗) 6= limk→∞H1(xk). Let

hk = argmin
h∈∂B(0,1)

∑
i,j

fi,j(xk)h
ihj

I.e.
H1(xk) =

∑
i,j

fi,j(xk)h
i
kh

j
k.

(Note that hk ∈ Rn might not be unique!.) Since the unit sphere is compact, there is a subsequence
of hk, hk(m) converging to some point h∗ ∈ B(0, 1). Recall that Q(x, h) ≡

∑
i,j fi,j(x)hihj and

because the fi,j ’s are continuous, we have that Q(x, h) is continuous.
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Consequently we have that the sequence (xk, hk) ∈ R2n has the property that

Q(xk, hk) = H1(xk(m)) = Q(xk(m), hk(m))→m→∞ Q(x∗, h∗) > H1(x∗) = Q(x∗, ĥ)

for some ĥ ∈ ∂B(0, 1).

But, since Q(x, h) is continuous and

(xk(m), ĥ)→m→∞ (x∗, ĥ),

this implies that Q(xk(m), hk(m)) > Q(xk(m), ĥ) for some large enough m which is a contradiction
because

Q(xk(m), hk(m)) = H1(xk(m)) = min
h∈∂B(0,1)

∑
i,j

fi,j(x)hihj .

Lemma 4.5.2. If Q(x0, h) > 0 for all h ∈ ∂B(0, 1), then Q(x, h) > 0 for all h ∈ ∂B(0, 1) and all
x ∈ B(x0, ε) and some ε > 0.

Proof. Because H1(x0) > 0 and H1 is continuous, there is an ε > 0 such that H1(x) > 0 for
x ∈ B(x0, ε). Thus Q(x, h) > 0 for all h ∈ ∂B(0, 1) and x ∈ B(x0, ε).

Exercise 4.5.2. Show that Q(x, h) > 0 for all |h| 6= 0 if and only if Q(x, h) > 0 for all |h| = 1

Theorem 4.5.1. Assume that f ∈ C2. If (∇f)(x0) = 0 and Q(x0, ) > 0 (equivalently, if Q(x0, h) >
0 for all |h| 6= 0) then there is an ε > 0 such that f(x) > f(x0) for x ∈ B(x0, ε).

Proof. The second order Taylor series tells us that

f(x) = f(x0) + (∇f)(x0) · h+
1

2

∑
i,j

fi,j(c)h
ihj

with h = x− x0, c = x0 + sh, and s ∈ (0, 1). Because (∇f)(x0) = 0 this reduces to:

f(x) = f(x0) +
1

2

∑
i,j

fi,j(c)h
ihj

= f(x0) +
1

2
Q(c, h)

and if Q(x0, h) > 0 for all |h| 6= 0, Lemmas 4.5.1 and 4.5.2 show that Q(c, h) > 0 for all |h| 6= 0
and c ∈ B(x0, ε). This implies that

f(x) > f(x0) ∀x ∈ B(x0, ε).
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4.5.2 A Slightly More Geometric Approach

Here is a somewhat more geometric approach to Lemma 4.5.2:

1. Because Q(x0, h) > 0 for h ∈ ∂B(0, 1) and Q(x, h) is continuous, then for every h∗ ∈
∂B(0, 1) there is an ε(h∗) > 0 and a ball B((x0, h

∗), ε(h∗)) ⊂ R2n such that for every (x, h) ∈
B((x0, h

∗), ε(h∗)), Q(x, h) > 0.

2. The union of these balls is an open set U , containing the compact set S ≡ {x0}× ∂B(0, 1) ⊂
R2n.

3. U c is closed and S is compact; this implies that the distance from U c to S is bounded below
by some δ > 0.

Proof. (a) Since every point s ∈ S is contained in an open ball centered on s that is disjoint
from U c, d(s, U c) ≡ infy∈Uc |y − s| > 0.

(b) Use the the triangle inequality proves that f(s) ≡ d(s, U c) is a continuous function on
S.

(c) Because S is compact and because f(s) > 0 for every s ∈ S, f attains a minimum at
some point sm ∈ S and δ ≡ f(sm) > 0.

4. Therefore
⋃
s∈S B((s, δ) ⊂ U .

5. Note that for every s = (x0, h) ∈ S, we have that for {x | |x− x0| < δ}, |(x, h)− (x0, h)| < δ.

6. This implies that Q(x, h) > 0 for all h ∈ ∂B(0, 1) ⊂ Rn and x ∈ B(x0, δ) ⊂ Rn.

4.5.3 A o(|h|2) Approach

Another approach again assumes that f ∈ C2 and uses the Taylor series for q = 2, but then
expresses each of the partial derivatives using the fact that they are continuous in x. I.e

fi,j(c) = fi,j(x0) + gi,j(c)

where gi,j(c)→ 0 as c→ x0. This leads to

f(x) = f(x0) + (∇f)(x0) · h+
1

2

∑
i,j

fi,j(x0)hihj +
1

2

∑
i,j

gi,j(c)h
ihj

with h = x− x0, c = x0 + sh, and s ∈ (0, 1).
Because (∇f)(x0) = 0 this reduces to:

f(x) = f(x0) +
1

2

∑
i,j

fi,j(x0)hihj +
1

2

∑
i,j

gi,j(c)h
ihj

Again, as above, because Q(x0, ) > 0 we have that

1

2

∑
i,j

fi,j(x0)hihj > α|h|2
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for some α > 0. Now choose ε > 0 such that |c− x0| < ε implies that gi,j(c) <
α

2n2 for all i and j.
Because x ∈ B(x0, ε) implies that c ∈ B(x0, ε), we have that

x ∈ B(x0, ε)

implies that

f(x) = f(x0) +
1

2

∑
i,j

fi,j(x0)hihj +
1

2

∑
i,j

gi,j(c)h
ihj

≥ f(x0) + α|h|2 − α

2n2
n2|h|2

= f(x0) +
α

2
|h|2

> f(x0)

Remark 4.5.1. Note that because

fi,j(c) = fi,j(x0) + gi,j(c)

and gi,j(c)→ 0 as c→ x0, we can express

f(x) = f(x0) + (∇f)(x0) · h+
1

2

∑
i,j

fi,j(x0)hihj +
1

2

∑
i,j

gi,j(c)h
ihj

as

f(x) = f(x0) + (∇f)(x0) · h+
1

2

∑
i,j

fi,j(x0)hihj + o(|h|2),

explaining the title of this subsection.

4.5.4 When Q(X0, ) = M(X0) has non-zero determinant (and when
it doesn’t)

The results we have obtained above make it simple to conclude that when (∇f)(x0) = 0 and
det(M(x0)) 6= 0, either is either a local maximum, a local minimum or a saddle point. Exercise 4.5.1
showed that Q(x0, ) < 0 implies that f(x) < f(x0) for all x ∈ B(x0, ε), though it assumed that
f ∈ C3.

Exercise 4.5.3. Assuming that f ∈ C2, show that there is an ε > 0 such that Q(x0, ) < 0 implies
that f(x) < f(x0) for all x ∈ B(x0, ε).

We know that by changing the basis of the domain at x0 using the eigenvectors of M(x0) as
basis vectors, we get that

Q(x0, h) =
n∑
i=1

λi(h
i)2

If det(M(x0)) 6= 0, then none of the eigenvalues are equal to 0 and if some are positive and some
are negative, then we have the following:

Exercise 4.5.4. Assuming that f ∈ C2, show that if (a) det(M(x0)) 6= 0, (b) some λi > 0 and (c)
some λi < 0, then x0 is a saddle point, i.e. in some directions f has a local minimum at x0 and in
other directions it has a local maximum at x0.
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Exercise 4.5.5. Find examples of functions f : R2 → R such that (∇f)(0) = 0, all the eigenvalues
of M(0) are non-negative, and:

1. f(x) < f(x0) for some h ∈ ∂B(0, 1) and all x = x0 + sh where s ∈ (−ε, 0) ∪ (0, ε).

2. f(x) < f(x0) for all x ∈ B(0, ε) for some some ε > 0.

4.6 Convex and Concave Functions

Convex and concave functions are the nicest that functions can get and still be non-linear. That
is, if f : Rn → R is not linear, but it is convex, then many properties are still very nice.

Definition 4.6.1 (epigraph). A epigraph of a function f : Rn → R, epi(f) is all the region in the
graph space above the graph of f : epi(f) ≡ {(x, y) ∈ Rn+1|y ≥ f(x)}.

Definition 4.6.2 (epograph). A epigraph of a function f : Rn → R, epo(f) is all the region in the
graph space below the graph of f : epo(f) ≡ {(x, y) ∈ Rn+1|y ≤ f(x)}.

Definition 4.6.3 (Convex Function: Definition 1). A function f : Rn → R is convex if epi(f) is
convex.

Definition 4.6.4 (Convex Function: Definition 2). A function f : Rn → R is convex if

f(αx+ βy) ≤ αf(x) + βf(y)

for all 0 ≤ α, β ≤ 1 such that α+ β = 1.

Exercise 4.6.1. Prove that the two different definitions of Convex Function are equivalent.

Definition 4.6.5 (Concave Function: Definition 1). A function f : Rn → R is concave if epo(f)
is convex.

Definition 4.6.6 (Concave Function: Definition 2). A function f : Rn → R is concave if

f(αx+ βy) ≥ αf(x) + βf(y)

for all 0 ≤ α, β ≤ 1 such that α+ β = 1.

Exercise 4.6.2. Prove that the two different definitions of Concave Function are equivalent.

Exercise 4.6.3. Show that the only functions that are both convex and concave are linear functions.

Exercise 4.6.4. Suppose that f : Rn → R is a convex function. Show that if x and y are both
local minima of f , then

1. f(x) = f(y),

2. for all w = αx+ (1− α)y, where 0 ≤ α ≤ 1, f(w) = f(x),

3. and therefore, every local minimum is a global minimum.
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Exercise 4.6.5. Use Exercise 4.6.4 to show that any nonempty set of minimizers of a convex
function f , is a convex set.

Exercise 4.6.6. Give an example of a convex function that is bounded from below, but has no
minimum value.

Exercise 4.6.7. Give an example of a convex function that is not bounded from below or above.

Definition 4.6.7 (Supporting Hyperplane). Let f : Rn → R be convex. We say that g =
(g1, g2, ..., gn) ∈ Rn∗ (Rn∗ is the dual space of Rn) defines a supporting hyperplane,

hg(x
∗) ≡ {(x, y)|y = 〈g, x− x∗〉},

of f at x∗ if

f(x) ≥ f(x∗) + 〈g, x− x∗〉

for all x ∈ Rn.

Exercise 4.6.8. Let f : Rn → R be convex. Show that the set of g ∈ Rn∗, such that hg(x
∗) are

supporting hyperplanes of f at x∗, is both closed and convex. We will denote this set of g by ∂x∗f .

Definition 4.6.8 (Left and Right Derivatives). Let f : R → R be convex. We define the left and
right derivatives at x∗ to be the limits

df

dx

l

≡ lim
x↑x∗

f(x)− f(x∗)

x− x∗

and
df

dx

r

≡ lim
x↓x∗

f(x)− f(x∗)

x− x∗
.

In exercises 4.6.9 to 4.6.13 we will assume that f : R→ R and f is convex.

Exercise 4.6.9. Show that for every w ∈ R, ∂wf is a closed bounded interval. Now show that the
endpoints of ∂wf correspond to the left and right derivatives of f at w.

Definition 4.6.9. (Notation - Interior) We denote the interior of a set E by Eo.

Exercise 4.6.10. Why is f differentiable at x if ∂xf = [s, s], i.e. the closed interval consisting of
a single point? Show that f is not differentiable at x if and only if (∂xf)o 6= ∅.

Exercise 4.6.11. Show that (∂uf)o ∩ (∂vf)o for all u,w ∈ R, u 6= w.

Exercise 4.6.12. Show that Fj ≡ {x| f is not differentiable at x} is at most countably infinite.
The j in Fj stands for “jump” – explain why I use the term jump for this set. Hint: plot the
derivative of a function f for which Fj is nonempty.
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Definition 4.6.10 (Measure Zero Sets). We will say that E ∈ R has 1-dimensional measure zero
if, for any ε > 0, we can find a collection of intervals Ii of lengths di such that E ⊂

⋃
i Ii and∑

i di < ε.

Exercise 4.6.13. Show that Fj defined in Exercise 4.6.12 has measure zero. This implies that
outside a set of measure zero, any convex function from R to R is differentiable. This is commonly
written as f is differentiable almost everywhere or f is differentiable a.e.

Exercise 4.6.14. Show that for a convex f : Rn → R, f is differentiable at x if and only if the set
∂xf is a single point.

Definition 4.6.11 (Convex Envelope). Define Cf to be the set of all convex functions c such that
c(x) ≤ f(x) ∀ x ∈ Rn. We define the Convex Envelope cnv(f),

cnv(f)(x) ≡ sup {fη(x) |fη ∈ Cf , fη(x) ≤ f(x)∀x ∈ Rn}

Exercise 4.6.15. Assume that C < f(x) for all x for some C > −∞. Show that cnv(f) is convex.

Exercise 4.6.16. Challenge Problem: Suppose that ε > 0. Let us call a function a ε-approximate
convex function if for all x, y ∈ R,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) + ε.

Suppose that f is ε-approximate convex. Prove: | cnv(x)− f(x)| ≤ ε for all x ∈ R

Exercise 4.6.17. Challenge Problem: Suppose that ε > 0. Define the ε-subdifferential ∂εx∗f , of f
at x∗ to be the set of g such that

f(x) + ε ≥ f(x∗) + 〈g, x− x∗〉

for all x ∈ Rn. Prove: ∂ cnv(f)x ⊂ ∂εxf



Chapter 5

Properties of Differentiable Functions

5.1 Linear Transformations

Only comment on this section is that you should have a book on linear algebra handy. You should
also review the singular value decomposition (SVD) and learn to use this when reasoning about
linear transformations. See also the Appendix Linear Algebra section in these notes.

5.2 Affine Transformations

Exercise 5.2.1. Show that if T : Rn → Rn is a transformation that is one-to-one and onto (i.e.
bijective), so that there is an inverse of T , T−1, then T ◦ T−1 = In and T−1 ◦ T = In, where
In : Rn → Rn is the identity transformation on Rn. Applying this to matrices, show that an
invertible matrix commutes with its inverse.

Exercise 5.2.2. Look up a proof, or create a proof of the following facts: if A and B are n × n
matrices, then

1. det(A) = det(At),

2. det(AB) = det(A) det(B).

5.3 Differentiable Transformations

Definition 5.3.1. (little o of h, o(h)) Suppose that f : Rn → Rm. We say that

f(h) ∈ o(h)

if

lim
h→0

f(h)

|h|
= 0

.

A mapping F is said to be differentiable at x if there is a good linear approximation to the
mapping at x. More precisely, we say that:

35
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Definition 5.3.2. (Differentiability and Derivatives) F : Rn → Rm is differentiable at x if there
is a linear map, LxF such that

F (x+ h) = F (x) + LxF (h) + o(h).

Often LxF (h) is denoted by DF (x)(h) and once a basis is chosen, DF (x) is represented by an m×n
matrix. Another equivalent way to say this is that F is differentiable at x if there is a linear
transformation LxF such that

lim
|h|→0

f(x+ h)− F (x)− LxF (h)

|h|
→ 0

5.4 Compositions

Theorem 5.4.1 (Composite Function Theorem). If g is differentiable at t0 and f is differentiable
at x0 ≡ g(t0), then F ≡ f ◦ g is differentiable at t0 and DF (t0) = Df(x0) ◦Dg(t0).

Proof. In this proof, I will drop the 0 subscript on t and x.

F (t+ h) = f(g(t+ h))

= f(g(t) + Ltg(h) + k(h))

= f(g(t)) + L
g(t)
f (Ltg(h) + k(h)) + l(Ltg(h) + k(h))

= F (t) + L
g(t)
f (Ltg(h)) + L

g(t)
f (k(h)) + l(Ltg(h) + k(h))

where k(h), l(h) ∈ o(h). If we assume that for k(h), l(h), w1(h), w2(h) ∈ o(h) we have

1. L
g(t)
f (k(h)) ∈ o(h)

2. l(Ltg(h) + k(h)) ∈ o(h)

3. w1(h) + w2(h) ∈ o(h)

we get that

F (t+ h) = F (t) + L
g(t)
f (Ltg(h)) + L

g(t)
f (k(h)) + l(Ltg(h) + k(h))

= F (t) + L
g(t)
f (Ltg(h)) + o(h))

= F (t) + (Df(g(t)) ◦Dg(t)) (h) + o(h)

and we are done. To finish, we need to show the (1-3) above. First some exercises.

Exercise 5.4.1. Show that if k(h) ∈ o(h), then C k(h) ∈ o(h).

Exercise 5.4.2. Show that k(h), l(h) ∈ o(h) implies k(h) + l(h) ∈ o(h).

Exercise 5.4.3. Show that if A : Rn → Rm is a linear transformation, then |A(y)| ≤ C|y| for some
C <∞.

Moving on with the proof:
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1. Because L
g(t)
f is a linear transformation, the above exercises imply that |Lg(t)f (y)| ≤ C|y|, so

that L
g(t)
f (k(h)) ≤ Ck(h) which implies that

L
g(t)
f (k(h)) ∈ o(h).

2. Now we show that l(Ltg(h) + k(h)) ∈ o(h). Observe that

{
l(h)

|h|
→
|h|→0

0

}
⇒

{
l(Ltg(h) + k(h))

|Ltg(h) + k(h)|
→

|Ltg(h)+k(h)|→0
0

}
.

We note also that
|Ltg(h)+k(h)|

|h| < C < ∞, implying {|h| → 0} ⇒ {|Ltg(h) + k(h)| → 0}. As a
result, we have that

l(Ltg(h) + k(h))

|h|
=

l(Ltg(h) + k(h))

|Ltg(h) + k(h)|
·
|Ltg(h) + k(h)|

|h|
(5.1)

≤ C
l(Ltg(h) + k(h))

|Ltg(h) + k(h)|
→
|h|→0

0 (5.2)

using {|h| → 0} ⇒ {|Ltg(h) + k(h)| → 0}.

Thus, l(Ltg(h) + k(h)) ∈ o(h).

5.5 Inverse Function Theorem

Theorem 5.5.1 (Inverse Function Theorem). Suppose that F : Rn → Rn, F ∈ C1(Rn), and Dx0F
is invertible. Then F−1 exists in a neighborhood of x0, Dx0(F−1) = (Dx0F )−1 and F−1 is also C1

in some neighborhood of F (x0). (In fact, if F ∈ Cq(Rn) then F−1 ∈ Cq(Rn).)

Proof. The first thing to note is that intuitively, this is reasonable, since, if the linear approximation
to F at x0, Dx0F , is invertible at x0, it is reasonable to think the thing that Dx0F approximates,
F , is also locally invertible at x0.

1. Recall that for a ∈ R, |a| < 1,
∑∞

i=0 a
i = 1 + a+ a2 + a3 + · · · = 1

1−a .

2. Without any loss of generality, we can assume that x0 = 0 and F (0) = 0. If not, then
translate in the domain and range: F̃ ≡ F (x+ x0)− F (x0).

3. Define G ≡ I − (D0F )−1 ◦ F and let ε = 1
2 .

4. Calculating, we see that D0G = 0 and since G ∈ C1, we have that ||DxG|| < ε for x ∈
B(0, δ(ε)) ⊂ Rn. To see this note that the operator norm of a matrix is less than the sum
of the absolute values of its entries. Since at x = 0 all the entries of the derivative of G are
0, and they are all continuous, we get the existence of that open δ(ε) ball in which ||DG|| is
less than ε.
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5. The mean value theorem gives that G is a contraction mapping in B(0, δ(ε)), i.e. |G(h) −
G(k)| < ε|h−k| for all h, k ∈ B(0, δ(ε)). Apply the mean value theorem to g(s) ≡ G(k+s(h−
k)). We get that g(1)−g(2) = g′(t)·(1−0) for some t ∈ (0, 1). But g′(t) = Dk+t(h−k)G·(h−k)
so we get that

|G(h)−G(k)| = |g(1)− g(0)|
= |g′(t) · (1− 0)|
= |Dk+t(h−k)G · (h− k)|
≤ ||Dk+t(h−k)G|| |h− k|
< ε|h− k|

6. Define H = I +G+G ◦G+ g ◦G ◦G+ · · · =
∑∞

i=0G
i.

7. Note that |H(h)| < 2|h|. We see this by observing that:

|H(h)| = |h+G(h) +G2(h) + · · · |
≤ |h|+ |G(h)|+ |G2(h)|+ · · ·
< |h|(1 + ε+ ε2 + · · · )

=
|h|

1− ε
= 2|h|

8. DH = I +DG+DG ◦DG+ · · · =
∑∞

i=0DG
i exists for all x ∈ B(0, δ(ε)). Note: if H were a

finite sum, this would follow immediately from the fact that the derivative of a finite sum of
functions is the sum of the derivatives of the functions. The claim that DH =

∑∞
i=0DG

i is
equivalent to the claim that for x and x+ h in B(0, δ(ε))

H(x+ h)−H(x)− (
∞∑
i=0

DGi)(h) ∈ o(h).

We split this into 3 pieces:

H(x+ h)−H(x)− (
∞∑
i=0

DGi)(h) = (Term 1)

{
N∑
i=0

Gi(x+ h)−
N∑
i=0

Gi(x)− (
N∑
i=0

DGi)(h)

}

+ (Term 2)

{ ∞∑
i=N+1

(Gi(x+ h)−Gi(x))

}

− (Term 3)

{
(
∞∑

i=N+1

DGi)(h)

}

To show that {Term 1 + Term 2 + Term 3} ∈ o(h), we must show that for any η > 0 there
is a δη such that

|h| < δη ⇒ {Term 1 + Term 2 + Term 3} < η.
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(a) Choose 0 < η.

(b) Choose N big enough that εN+1

1−ε < η
3 .

(c) Choose δ̃ small enough that {Term 1} < η
3 |h| which we can do since a finite sum of

differentiable functions is differentiable.

(d) Note also that because G is a contraction, we get that

|Gi(x+ h)−Gi(x)| < εi|h|

for x and x+ h in B(0, δ(ε)).

(e) Define
δη = min((δ(ε)− |x|), δ̃).

(f) Using
∑∞

i=N+1 ε
i = εN+1

1−ε , we calculate:

{Term 1 + Term 2 + Term 3} <
η

3
|h|+ εN+1

1− ε
|h|+ εN+1

1− ε
|h|

< η|h|

whenever |h| < δη.

9. Define δ ≡ δ(ε)
2 .

10. H ◦ (I −G) = I and (I −G) ◦H = I on B(0, δ). Why δ = δ(ε)
2 ? We have to make sure that

the output of H and the output of I −G stays in the set of points where G is a contraction
mapping, so, since H can double the size of whatever you stick in H (and I −G can increase
the size by a factor of at most 3

2), we restrict ourselves to the ball 1
2 the size of the ball on

which G is a contraction mapping.

11. This implies that H ◦ (D0F )−1 ◦ F = I and F ◦H ◦ (D0F )−1 = I. In other words, on

F (B(0, δ)),

we have that
F−1 = H ◦ (D0F )−1.

Simply compute it.

12. Also, from Step 8 we have that H is differentiable so that

DF−1 = DH ◦ (D0F )−1

and
DF (x)(F

−1) = (DxF )−1.

We have that

(a) H ◦ (D0F )−1 ◦ F = I implies that DH ◦ (D0F )−1 ◦DF = I on B(0, δ).

(b) Likewise we get DF ◦DH ◦ (D0F )−1 = I on F (B(0, δ)).

(c) We conclude that DF−1 = DH ◦(D0F )−1 and D(F−1)◦DF = I and DF ◦D(F−1) = I.
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Note that H being differentiable at all x ∈ B(0, δ(ε)) is enough since

(D0F )−1(F (B(0, δ))) ⊂ B(0, δ(ε)).

We have that
DF−1 = DH ◦ (D0F )−1

for all x ∈ F (B(0, δ)).

13. Recall that for any invertible n×n matrix A,

A−1 =
1

det(A)
adj(A)

where

(a) adj(A) = CT

(b) C, the cofactor matrix, has elements Ci,j = (−1)i+jM(A, i, j)

(c) M(A, i, j) is the determinant of the (n-1)×(n-1) matrix obtained by removing the ith
row and the jth column of A.

14. This implies that if, for x ∈ E, E open, det(DF ) 6= 0, (DxF )−1 has the same differentiability
as DxF does. Because det(DxF ) is a polynomial of elements of the matrix DxF that is
nonzero when x ∈ E, (DF )−1 = 1

det(DF )adj(DF ) implies that

(DF )−1 =
Matrix of polynomials of elements of DF

non-zero polynomial of elements of DF
.

This gives us the result we want.

15. We therefore have that all the partial derivatives of DF (x)(F
−1) = (DxF )−1 with respect to

x are continuous up to order q − 1.

16. This implies that Dy(F
−1) = (DF−1(y)F )−1 is continuous in y as long as F−1(y) is continuous.

But Step 8 implies that F−1 is continuous. This gives us that F−1 is in C1: all the partial
derivatives of F−1(y) with respect to the yi are continuous. Using the fact that Dy(F

−1) =
(DF−1(y)F )−1 and iterating, we get the result we want. Namely ...

17. We conclude that F ∈ Cq → F−1 ∈ Cq.

5.6 Implicit Function Theorem

Theorem 5.6.1 (Implicit Function Theorem). Suppose that F : Rn → Rm, m < n is Cq in a
neighborhood of a ∈ Rn. Suppose also that DaF is full rank and that, without loss of generality,
that the first m columns of DaF are independent. Express x ∈ Rn as x = (x1, x2) where x1 ∈ Rm
and x2 ∈ Rn−m, so that a = (a1, a2). Then there exists a neighborhood of a2 ∈ Rn−m, Ua2, and a
function ga : Rn−m → Rm, such for all

y ∈ Ua2 ⇒ F (ga(y), y) = F (a).
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Proof. We prove the theorem in stages:

We assume F (0) = 0. Note that if F (a) = b, then F̃ (x) ≡ F (a + x) − b satisfies F̃ (0) = 0 and
D0F̃ = DaF . So we can assume that F (0) = 0.

To illuminate the Implicit Function Theorem, we look at the case of a linear function in detail.

The Linear Case. 1. If F : Rn → Rm is linear, then DF = F .

2. From the assumptions in the theorem, the first m columns of F are linearly independent.
Write DF = F = [F1 F2] in block form, where the first m columns of F form the m×m
matrix F1 and the last n-m columns form the m×(n-m) matrix F2.

3. Note that Fx = F1x1 + F2x2 and that F1x1 = −F2x2 if and only if Fx = 0.

4. Since F1 is invertible, we get

x1 = −F−1
1 F2x2 if and only if Fx = 0.

5. So

x = (x1, x2) = (−F−1
1 F2x2, x2) for any x2 ∈ Rn−m

if and only if

F (x) = 0.

In the language of the theorem g0(x2) = −F−1
1 F2x2 so that

F (g0(x2), x2) = F (−F−1
1 F2(x2), x2) = 0

for not just some neighborhood of x2 ∈ Rn−m but for all x2 ∈ Rn−m.

The Nonlinear Case. The basic idea will be to embed F in a mapping from Rn to Rn and then use
the inverse function theorem.

1. In fact, the embedding is a simple one:

G : x = (x1, x2) ∈ Rn → y = (y1, y2) ∈ Rn

is defined by

y = (y1, y2) = (F (x1, x2), x2).

2. Denote the first m columns of DF by D1F and the last n-m columns by D1F . (We are
suppressing the subscript that indicates where the derivative is being evaluated.)

3. With this notation, we get that the derivative of G, DG is given by:

m n-m

DG =
m

n-m

[
DF1 DF2

0 In−m

]
where In−m denotes the (n-m)×(n-m) identity matrix

4. Computing, we get that det(G) = det(F1) 6= 0.
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5. Thus, there is an inverse function

(x1, x2) = (g1(y1, y2), g2(y1, y2))

such that

F (g1(y1, y2), g2(y1, y2)), g2(y1, y2)) = (y1, y2)

for all (y1, y2) ∈ B(0, δ) ⊂ Rn for some sufficiently small δ > 0.

6. But we already knew that g2(y1, y2) = y2 and we get that:

F (g1(y1, y2), y2), y2) = (y1, y2).

7. Choosing y1 = 0, we get that

F (g1(0, y2), y2), y2) = (0, y2)

and defining g(y2) ≡ g1(0, y2) we get that

F (g(y2), y2) = 0

for all y2 ∈ B(0, δ) ⊂ Rn−m.

The differentiability follows from the Inverse Function Theorem.

Remark 5.6.1. The idea behind the implicit function theorem is that, assuming that Dx1F (The
first m columns of the derivative of F ) is invertible at a = (a1, a2), then any changes caused by
jiggling a2 a bit can be undone by changing a1 a bit.

In a little more detail:

1. Since Dx1F (a1, a2) is invertible and this derivative is continuous, Dx1F (a1 + h1, a2 + h2) is
invertible for (h1, h2) ∈ B(0, δ) ⊂ Rn for small enough δ.

2. This in turn implies that for any fixed h2 ∈ B(0, δ2) ⊂ Rn−m, F (a1 + h1, a2 + h2) is an

invertible function of h1 ∈ B(0, δ2) ⊂ Rm, with B(F (a), ε) ⊂ F (a1 + B(0, δ2), a2 + h2) for

all h2 ∈ B(0, δ2) – this is the thing that takes the most to prove carefully, if done directly as
suggested here.

3. Using the fact that because F is continuous, for small enough δ2 ≤ δ
2 we will get that when

h2 ∈ B(0, δ2)⇒ |F (a1, a2 + h2)| < ε.

4. Putting all this together, we get that for h2 ∈ B(0, δ2), there is a function g such that
F (g(h2), h2) = F (a1, a2) = F (a)

Note: To get correspondance between remark and the theorem above, note that set a2+g(x2−a2)
replaces g(x2) in the proof of the theorem which replaces ga(x2) in the statement of the theorem.
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is the square of diamter 2ε centered at F (a) ∈ R2
The set F−1

x1
(C(F (a), ε), a2 + h2) where C(F (a), ε)

a2

a1

x2 = a2 i.e. h2 = 0

g(h2)

x1 ∈ R2

x2 ∈ R

F (a1 + g(h2), a2 + h2) = F (a1, a2)

Figure 5.1: Illustration for remark 5.6.1: the F in this illustration maps R3 to R2. Continuity
of the local inverse in the first factor, x1, allows us to define an implicit function. Note: We
are illustrating the implicit function whose graph lives in R3, the domain of F , not the graph
of F , which lives in R5. Note: the deformation shown of the square C(F (a), ε) as we move
along the x2 direction is a deformation in the 2 dimensions associated with x1, not the single
dimension associated with x2). That is those wiggly squares are still flat!

Remark 5.6.2. Note that if, instead of Steps 1-2 in the remark 5.6.1, we assume that F is con-
tinuous,

F (a1 + h1, a2 + h2) : h1 ∈ B(0, δ)→ Uh2 is invertible

and
B(F (a), ε) ⊂ Uh2 for some ε > 0 and all h2 ∈ B(0, δ),

we get a locally valid implicit function.
Thus differentiability is not necessary as long as we know something about the local invertibility

of the F in the first factor of the domain (i.e. invertibility in h1).

Remark 5.6.3. Though I did notice, in the wikpedia article on the implicit function theorem, that
someone had worked out the implicit function theorem for continuous, non-differentiable functions
that are invertible in the first factor, I did not go back to see how closely what I wrote corresponds
to what they quote there.

Remark 5.6.4. I recommend working through Problem 7 in Section 4.6 on page 152 of Fleming’s
book.

5.7 Manifolds

I like Fleming’s section on manifolds and the fact he takes a very concrete approach to the definition
of a manifold. But I will add a few notes that, to a large degree, overlap what he does.

5.7.1 Embedded manifolds are enough

Assuming that the manifold is a subset of Rn for some n is, technically speaking, not very restrictive
since any r-manifold can be embedded in some Rn for an n ≥ 2r.
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Of course, such an embedding might not be helpful, or might even make things less clear, so in
many practical cases, you will work with a more intrinsic definition. Nevertheless, a great deal of
intuition can be built and broadly useful results can be constructed considering only submanifolds
of Rn. Of course, all local properties and ideas can be understood using only submanifolds.

The basis for the statements that embedded manifolds are (almost) enough is based on the
Whitney and Nash emebdding theorems.

5.7.2 Definitions

Note: I now adopt Fleming’s choice of which variables to assume invertible. That is, I assume that
our defining maps F (x1, x2) are locally invertible in the second factor x2 which is n-m dimensional,
so that the level sets defined by F are m-dimensional.

Definition 5.7.1 (m-dimensional manifolds). Suppose that a set E ⊂ Rn has the property that for
every point x̂ ∈ E, there is an open ball B(x̂, δ) such that E ∩B(x̂, δ) = {x|F (x) = 0} ∩B(x̂, δ) for
some F : Rn → Rn−m where DF is full rank in B(x̂, δ). Then we say that E is an m-dimensional
manifold. Because E ⊂ Rn, we also say that E is an m-submanifold of Rn

Definition 5.7.2 (m-Slices of Rn). Define the m-slice of Rn, Rm, by Rm ≡ {x ∈ Rn|xm+1 =
xm+2 = ... = xn = 0}.

Definition 5.7.3 (Slice map for a manifold). We start with an m-manifold E.

1. Given a defining map F : Rn → Rn−m for an m-manifold E at a point x̂ = (x̂1, x̂2) ∈ E.

2. Inspired by the proof of the implicit function theorem (but assuming Fx2 invertible instead of
Fx1 invertible), define the (local) C1 diffeomorphism G(x1, x2) to be (y1, y2) = G(x1, x2) =
(G1(x1, x2), G2(x1, x2)) = (x1, F (x1, x2)).

3. Suppose G is invertible on B((x̂1, x̂2), δ).

4. Choose B((x̂1, 0), η) ⊂ G(B(x̂, δ)).

5. Define H = G−1. Note that H is a C1 diffeommorphism.

6. Define B ≡ B((x̂1, 0), η)

Then we have that

E ∩H(B) = H(Rm ∩B)

i.e., we can conclude that G localy straightens out E into a piece of Rm. We will call H the slice
map because it locally maps Rm difeomorphically onto E.

Definition 5.7.4 (Tanget vectors I). At any point x ∈ E ⊂ Rn, where E is an m-manifold, we
define the set of tangent vectors to be vectors v ∈ Rn such that there is a differentiable map
γ : (−ε, ε) ⊂ R → E satisfying (1) γ(0) = x and (2) γ̇(0) = v. (γ̇ denotes the derivative of γ with
respect to t.)

Since there is locally a one to one corredpondence between differentiable paths in E through x
and paths in Rm through (x1, 0), we can modify the last definition:
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Definition 5.7.5 (Tanget vectors II). At any point x ∈ E ⊂ Rn, where E is an m-manifold, we
define the set of tangent vectors to be vectors v ∈ Rn such that there is a differentiable map
γ : (−ε, ε) ⊂ R→ Rm satisfying (1) H(γ(0)) = x and (2) DH(γ̇(0)) = v. (γ̇ denotes the derivative
of γ with respect to t.)

Fact 5.7.1. Tangent vectors at x ∈ E are in the null space of DxF , the derviative of the defining
function F at x.

Proof. Since G2(H(γ(t))) = 0 for all t in a neighborhood of 0, we get that DG2 ◦DHγ̇(0) = 0. In
other words the tangent vectors of E at x are null vectors of DxG2 = DxF .

Definition 5.7.6 (Tangent Space). The tangent Space of E at a point x, TxE, is the set of all
tangent vectors to E at x.

Definition 5.7.7 (Normal Vectors). Suppose that M is a k-dimensional submanifold of Rn. Then
at each point x ∈ M , we define the set of normal vectors, NxM to be all w ∈ Rn such that
〈v, w〉 = 0 for all v ∈ TxM .

Remark 5.7.1. Suppose φ : Rn → Rn−k is a defining function for a k-submanifold M . Then the
columns of (Dxφ)t (the transpose of Dxφ) span NxM , the normal space of M at x.

Exercise 5.7.1. Prove the statement in Remark 5.7.1

5.7.3 Intersections

Definition 5.7.8 (Transverse Intersections). Suppose that K and M are submanifolds of Rn of di-
mension k and m and suppose that x ∈ K∩M . Then we say that K and M intersect transversly
if dim(TxK ∩TxM) = k+m−n. When k+m−n < 0, we interpret this to mean that K ∩M = ∅.
We denote the fact that K and M intersect transversly by K ∩>M .

Remark 5.7.2 (Transverse Linear Subspaces). Note that if K is a linear subspace of dimension k,
then there are n− k vectors NK ≡ {n1, ..., nn−k} which are mutually orthogonal to each other and
to every vector in K. Likewise, if M is a linear subspace of dimension m, then there are n −m
vectors NM ≡ {m1, ...,mn−k} which are mutually orthogonal to each other and to every vector in
M . It is clear that every vector in K ∩M will be orthogonal to every vector in NK ∪NM . If the set

NK ∪NM

is linearly independent, we get that

dim(K ∩M) = n− (n− k)− (n−m) = k +m− n.

Assume (n− k) + (n−m) ≤ n. Then NK ∪NM will be an independent set of vectors whenever (a)
the K and M are chosen randomly or equivalently, when the elements of NK and NM are chosen
randomly and (in the stochastic sense) independently. Thus we see that transverse intersections
are what is expected when Linear subspaces intersect – they are typical in a sense that can be made
precise using ideas from probability.
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Note that if we consider submanifolds K and M , with defining equations

{φi}n−k1 which define Φ : Rn → Rn−k

and
{ψi}n−m1 which define Φ : Rn → Rn−k,

then, together they Φ and Ψ define a map G, from Rn to R2n−k−m. Wherever DG is full rank and
2n − k −m = (n − k) + (n −m) ≤ n, we will get that G locally defines a manifold of dimension
n− (2n− k −m) = k +m− n. Of course,

{x|G(x) = c = (c1, c2)}

for some
c = (c1, c2) ∈ Rn−k × Rn−m = R2n−k−m,

is the intersection of
{x|Φ(x) = c1} and {x|Ψ(x) = c2}.

Thus transverse intersection translates into well behaved intersection in these sense of the manifold
character of the intersection. A little more precisely, if

1. Φ is full rank at x and therefore locally Φ defines a k-submanifold, and

2. Ψ is full rank at x and therefore locally Ψ defines a k-submanifold

then
{K ∩>M} ⇒ {K ∩M is locally a (k+m-n)-submanifold}

.

5.7.4 Comments

For further study, I recommend a combination of John M. Lee’s three books on manifolds [10, 11, 12],
Boothby’s book, “Introduction to Differentiable manfolds and Riemannian Geometry” [1] and Do
Carmo’s book “Riemannian Geometry” [6]. If you are going to pick only one, I would pick Boothby’s
book, but I would recommend having Lee’s book on smooth manifolds on hand as well. For
Riemannian Geometry, I like Do Carmo’s book best, but even here, the others have their merits.



Chapter 6

Measure and Integration

6.1 Riemann vs Lebesgue

Since you have already been exposed to the idea of integration in the usual calculus course, you
will already have an intutively correct idea of what integration is all about. What we change here
is the kinds of things we integrate and the measures we integrate over. And we get much more
deeply involved in the details, which turn out to be wonderfully rich.

Lebesgue integration is the typical choice of analysts when they want to think about integrating
things. But it is not the only choice. Daniell integrals, Steltjes integrals, and a bunch of others are
out there, all with their particular uses and enthusiasts. Our approach here is pragmatic: Lebesgue
works for most things and for those things we will use it. When it doesn’t quite fit the bill, we use
what does work.

So, what is Lebesgue integration and how does it differ from Riemann integration? In Riemann
integration, we partition the domain into regular subsets (intervals or rectangles) and take the the
largest and smallest functional values attained in each subset, multiply these values by the measure
of those subsets and sum these up, after which we take infimums and supremums:∫ ∗

fdµ ≡ inf
P

∑
i

sup
x∈Ii

f(x)µ(Ii)

∫
∗
fdµ ≡ sup

P

∑
i

inf
x∈Ii

f(x)µ(Ii)

where P is the partition of the domain into intervals Ii. If
∫ ∗
fdµ =

∫
∗ fdµ then we say f is

Riemann integrable.
In Lebesgue integration, we parition the range into intervals Ii and pull them back to a partition

of the domain: Ei = f−1(Ii). (This paritition can be very far from regular!) We get:∫ ∗
fdµ ≡ inf

P

∑
i

(
sup
y∈Ii

y

)
µ(f−1(Ii)) = inf

P

∑
i

biµ(f−1(Ii))

∫
∗
fdµ ≡ sup

P

∑
i

(
inf
y∈Ii

y

)
µ(f−1(Ii)) = sup

P

∑
i

aiµ(f−1(Ii))

We are rewarded for our change in pespective by the result that now, every respectable function
is integrable! (By integrable we will mean the upper and lower integrals are equal). As a result,

47
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we like the Lebesgue integral and are not so inclined to like the Riemann integral, even though for
many practical purposes they are indistinguishable (because for really nice functions, they are the
same.) Figure 6.1 illustrates both versions of integration.

Exercise 6.1.1. Recall that the function f : Rn → R is said to be measurable if the set f−1(I)
is Ln measurable whenever I is a (possibly infinite) interval. Suppose that the support of f is
bounded. Show that the Riemann integral

∫
f(x) dx exists when f is continuous, but that it is

even easier to show that the Lebesgue integral
∫
f(x) dL1x exists when f is merely measurable.

Hint: A continuous function on a compact set is uniformly continuous.

6.2 Iterated Integrals

Integraing [x+y] over [0, r]× [0, s]: The problem of integrating φ(x, y) = [x+ y] over the region
A(r, s) ≡ {(x, y) | 0 ≤ x ≤ r and 0 ≤ y ≤ s} can be done by brute force (which is what I started to
do when working on it, but realized later I could do this by rearranging the terms a bit). We can
use the symmetry of the region to simplify the calculation a great deal.

1. Note that φ is constant on any line with a slope of −1.

2. Let RL and RU are upper and lower regions with the same area, V2(RL) = V2(RU ),

3. Let φ(RL) and φ(RU ) be the values of φ on those regions, noting that φ is constant on those
regions.

4. Then:

φ(RL)V2(RL) + φ(RU )V2(RU ) = (φ(RL) + φ(RU ))A

=
φ(RL) + φ(RU )

2
2A

=

(
φ(RL) + φ(RU )

2

)
(V2(RL) + V2(RU ))

=

(
r + s− 1

2

)
(V2(RL) + V2(RU ))

5. If the number of regions is even, we are done.

6. If the number of regions (steps of φ in [0, r] × [0, s] with non-zero area) is odd the value of
the middle step is r+s−1

2 . Proof: since there are r + s steps, the middle step, when r + s is
odd is r+s−1

2 + 1 step. but the value on the kth step is always k− 1, so the value of φ on the
middle step is r+s−1

2 + 1− 1 = r+s−1
2 .

7. See Figure 6.2

Exercise 6.2.1. Suppose that φ(x, y) = [x+ y] and A = [0, r]× [0, s] ⊂ R2. State why∫
A
φ(x, y) dL2 =

∫
A

(r + s− 1)− φ(x, y) dL2.

Use this to compute
∫
A φ(x, y) dL2.
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I4
...

I1

I2

I3

...

· · ·
· · ·

E1 E1 E3 E4 · · ·

E3 = f−1(I3)

E4 = f−1(I4)

E2 = f−1(I2)

E1 = f−1(I1)

Figure 6.1: Riemann versus Lebesgue Integration: the upper figure illustates the par-
tition of the domain dictated by the Riemannian approach. The green and red rectangles
live completely below the graph of f . Call the area they sum to Alower(P ) where P is the
paritition. The red and green plus the cyan rectangles live completely above the graph.
Call their area Aupper. If supP Alower(P ) = infP Aupper then f is Riemann integrable. The
lower figure illustrates that key difference for the Lebesgue case: we partition the range and
pull that back by f−1 to a partition of the domain. It turns out that this is exactly what
is needed to make all reasonable functions integrable. Now Alower(P ) =

∑
i aiµ(Ei) and

Aupper(P ) =
∑

i biµ(Ei) where P is a parition of the range into the intervals Ii = [ai, bi).
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r + s− 8

r + s− 9

r + s− 10

r + s− 11

r + s− 12

r + s− 13

r

s

region is r + s− 10.5

Average value in blue

x

y

r + s− 1

r + s− 2

0

1

2

r + s− 3

Figure 6.2: Integrating [x+ y] over [0, r]× [0, s]: The function φ is a step function and in
[0, r]× [0, s] there are r + s steps with positive area, and one – {(r, s)} – that has one point
in it. In the case pictured here, r + s = 20. If we combine regions of equal size, starting at
regions touching the opposite corners (0, 0) and (r, s), the average of the φ on those regions

is always r+s−1
2

. Thus the integal is rs(r+s−1)
2

. I.e since 0+r+s−1
2

= 1+r+s−2
2

= 2+r+s−3
2

= · · ·
the integral is equivalent to integrating r+s−1

2
over the rectangle. Note that in this case,

r = 7 and s = 13 so that the r+s−1
2

= r + s− 10.5
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Exercise 6.2.2. Suppose f(x, y) ≡ y and we define A ≡ {(x, y) | y ≥ x, 0 ≤ x ≤ 1, y ≤ 1}.
Evaluate

∫
A f(x, y)dL2 in two different ways by using iterated integrals. Draw figures illustrating

what you are doing.

Exercise 6.2.3. Suppose f(x, y, z) ≡ 1 and we define A ≡ {(x, y, z) | y ≥ x, 0 ≤ x ≤ 1, y ≤ 1, 0 ≤
z ≤ y − x}. Evaluate

∫
A f(x, y, z)dL3 in three different ways by using iterated integrals. Draw

figures illustrating what you are doing.

Exercise 6.2.4. Suppose f(x, y, z) ≡ z and we define A to be the region in Exercise 6.2.3. Evaluate∫
A f(x, y, z)dL3 in three different ways by using iterated integrals. Draw figures illustrating what

you are doing.

There are difficult problems that can be solved by switching order of integration or summa-
tion. Examples include the proof of the Cauchy Binet formula (a very significant generalization
of the pythagorean theorem), the proof of the central result in Vapnik-Chernovenkis theory (a
very important piece of statistical learning theory), and the proof of the deformation theorem in
geometric measure theory (which is a very powerful approximation theorem for currents which are
generalized surfaces). A reference for the first theorem is Evans and Gariepy’s Measure Theory and
Fine properties of functions [7], references for the second include the very nice notes on statisti-
cal learning theory by Rob Nowak nowak-2009-notes as well as A probabilistic Theory of Pattern
Recognition by Devroye, Györfi and Lugosi [5], and a reference for the last theorem is Krantz and
Parks’, Geometric Integration Theory [9]. These are all more advanced than Fleming’s book, but
a little bit of coaching would be sufficient for the motivated student to dig into any one of those.
(But the coaching would be important in most cases.)

6.3 When Integrals Diverge.

In Fleming’s book, there is a problem that asks you to show that

lim
r→∞

∫ r

1

sin(x)

x
dx

exists and is finite. This is the launching point for the exploration in this section. Recall that
f+ ≡ max(f, 0), f− ≡ max(−f, 0), and that

χE(y) ≡
{

1 when y ∈ E
0 when y 6∈ E (6.1)

I will define

sgn(y) ≡
{

1 when y > 0
0 when y ≤ 0

(6.2)

(Note that this definition of sgn is non-standard.) We define R+ ≡ {x ∈ R | x > 0} and Z+ ≡ {x ∈
Z | x > 0}. Note also that we will often use dx to denote dLk, k-dimensional Lebesgue measure in
Rk.

Exercise 6.3.1. Note that limr→∞
∫ r

1
1
xdx→∞. The following sequence is inspired by (and aimed

at) the following problem: show that

lim
r→∞

∫ r

1

(
sin+(x)

x

)
dx =∞.
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1. Show that if ai ≥ 0 for all positive integers i and ai are non-increasing: a1 ≥ a2 ≥ · · · , then,
for any k ∈ Z+,

∑∞
i=1 ai is finite if and only if

∑∞
i=1 a1+k·i is finite.

2. Define S+(x) = sgn(sin(x)): the function that is 1, when sin(x) > 0, and 0, when sin(x) ≤ 0.

3. Show that limr→∞
∫ r

1
1
xdx→∞ implies that limr→∞

∫ r
1
S+(x)
x dx→∞.

4. For any positive integer n, define:

(a)

En ≡ · · · [−2n,−2n+ 1] ∪ [−n,−n+ 1] ∪ [0, 1] ∪ [n, n+ 1] ∪ [2n, 2n+ 1] ∪ · · ·
=

⋃
k∈Z

[kn, kn+ 1]

(b) Bn(x) ≡ χEn , and

(c) Bn,τ,s(x) = Bn(τx+ s) where τ and s are real numbers.

5. Show that limr→∞
∫ r

1
βBn,τ,s(x)

x dx→∞ for any choice of n ∈ Z+ and τ, s, β ∈ R+.

6. Find n ∈ Z+ and τ, s, β ∈ R+ such that βBn,τ,s(x) ≤ sin+(x) for all x.

7. Now use the previous steps to get that limr→∞
∫ r

1

(
sin+(x)

x

)
dx =∞.

Exercise 6.3.2. We depended on the fact that f(x) = 1
x was nonincreasing in Exercise 6.3.1, but

that was more than we actually needed.

1. Suppose that 0 < f(1) <∞ and f(x) ≥ 0 for all x ∈ R+.

2. Suppose f(x)
f(y) ≤ C <∞ for all 0 < y < x.

3. Show that
∫∞

1 f(x) sin+(x)dx is finite if and only if
∫∞

1 f(x)dx is finite

Exercise 6.3.3. Show that if k ∈ Z+, ai ≥ 0 for all i ∈ Z+ and ai
aj
≤ C < ∞ for all j < i, then∑∞

i=1 ai is finite if and only if
∑∞

i=1 a1+k·i is finite.

Exercise 6.3.4. Here is another variation:

1. Suppose that 0 < f(1) <∞ and f(x) ≥ 0 for all x ∈ R+.

2. Suppose f(x)
f(y) ≤ C <∞ for all 0 < y < x.

3. Suppose that N, k ∈ Z+.

4. Show that
∑∞

i=N f(1 + k · i) is finite if and only if
∫∞

1 f(x)dx is finite

Exercise 6.3.5. And another:

1. Suppose again that 0 < f(1) < ∞, f(x) ≥ 0 for all x ∈ R+ and f(x)
f(y) ≤ C < ∞ for all

0 < y < x.
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2. Suppose that {xi}∞i=1 has the property that 0 < α < i
xi
< β <∞.

3. Show that
∑∞

i=1 f(xi) is finite if and only if
∫∞

1 f(x)dx is finite.

4. Show that if we only know that 0 < α < i
xi

, then, if
∑∞

i=1 f(xi) is finite, we know that∫∞
1 f(x)dx is finite. Find an example of a sequence such that 0 < α < i

xi
,
∫∞

1 f(x)dx is
finite, but

∑∞
i=1 f(xi).

Exercise 6.3.6. [Challenge Problem] Suppose again that 0 < f(1) < ∞, f(x) ≥ 0 for all

x ∈ R+ and f(x)
f(y) ≤ C <∞ for all 0 < y < x.

1. Assume the measure µ has the property that 0 < α ≤ µ([n,n+m])
m ≤ β < ∞ for n,m ∈ Z+

such that n,m ≥ N , where N ∈ Z+.

2. Show that
∫∞

1 f(x) dµ is finite if and only if
∫∞

1 f(x) dx is finite.

3. Show that Exercises (6.3.1-6.3.5) are special cases of this result.

The key idea in Exercises (6.3.1-6.3.6) is that to know whether or not
∫∞

1 fdx <∞, you need
only have a very rough approximation to the measure in the integral (i.e. the Lebesgue measure
L1) and the property that f(y) bounds f(x) for y < x, modulo the constant C.

6.4 Transforming Volumes

If we map E ⊂ Rn, Ln(E) < ∞, by an affine map F : x → Ax + b, where F : Rn → Rn, then
Ln(F (E)) = |det(A)|Ln(E) . How can we see this?

First we observe that if

A =

 | | . . . |
a1 a2 . . . an
| | . . . |


and

ei =



0
...
0
1
0
...
0




all entries except the ith is zero, the ith = 1,

then ai = Aei and we have that the unit cube, defined by the ei’s gets mapped to the parallelpiped
defined by the ai.

Lebesgue measure is rotationally invariant and so we can compute the volume of the paral-
lelpiped defined by the columns of A or we can compute the volume of OA for any orthogonal
matrix O. The QR decomposition gives us A = QR where Q is an n by n orthogonal matrix and
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R is an upper triangular matrix. (You might know this as the gram-schmidt orthogonalization of
the columns of A.) Note that

A =


∣∣ ∣∣ . . .

∣∣
a1 a2 . . . an∣∣ ∣∣ . . .

∣∣
 =


∣∣ ∣∣ . . .

∣∣
q1 q2 . . . qn∣∣ ∣∣ . . .

∣∣


r1,1 r1,2 r1,3 . . . r1,n

0 r2,2 r2,3 . . . r2,n

0 0 r3,3 . . . r3,n
...

...
...

. . .
...

0 0 0 . . . rn,n


Since the volume of the parallelpiped defined by the columns of A is the same as the volume of the
parallelpiped defined by the columns of QtA = R.

Now we change the signs of the columns so that all the ri,i’s are positive. This only changes the
determinant by a sign, if at all. We ignore the sign since a negative sign just indicates a reflection,
i.e. a change in orientation and we are here only focusing on dilations and contractions here. We
denote this changed R by R̂ and the elements of are r̂i,j , instead of ri,j .

Now we note that the n-parallelpiped defined by the columns of R̂, P R̂n , equals the object

obtained by taking P R̂n−1, the n − 1-parallelpiped defined by the first n − 1 columns of A, and

stacking them up with shifts (r̂1,n, r̂2,n, . . . , r̂n−1,n, 0) direction. More precisely, the slice of P R̂n at
a height h above the plane of the first n− 1 coordinates equals the set

Pn−1 +
h

r̂n,n
(r̂1,n, r̂2,n, . . . , r̂n−1,n, r̂n,n).

Fubini’s theorem give us that the volume of P R̂n must therefore be the volume of P R̂n−1 times the
height of the stack, r̂n,n. That is,

Ln(P R̂n ) = Ln−1(P R̂n−1)r̂n,n.

Continuing in this way, we get that

Ln(P R̂n ) = Πn
i=1r̂i,i (6.3)

= det(R̂) (6.4)

= |det(R)| (6.5)

= |det(Qt) det(A)| (6.6)

= |det(A)|. (6.7)

Thus we get that A changes volumes of sets in Rn by a factor of | det(A)|

6.5 Regions Bounded by Simple Closed Curves

If ω(t) is a smooth, arc-length parameterization of ∂Ω ⊂ R2 and is a simple closed curve with
length L, then

L2(Ω) =

∫ L

0
ω × ω̇ dt

We are assuming the standard counterclockwise orientation of the boundary.

There are two ways in which we will prove this.
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Proof 1. This is a direct proof, using an approximation argument:

1. We can approximate ω as closely as we like, both in terms of length and the area of the
enclosed approximation to Ω, with a polygon whose vertices lie on ω. We will denote the
region bounded by P , ΩP .

2. We can create this polygon by choosing a set of rays from the origin that are spaced finely
enough that the P and ΩP appriximate ω and Ω as closely as we like. See Figure 6.3.

Figure 6.3: Rays that generate a polygon P, approximating Ω.

3. We will denote the vertices by {vi}Ni=1. The side that starts at vi and ends at vi+1 will be
denoted by Si. The orientation of the polygon P is also counterclockwise.

4. The oriented area of the triangle formed by any side Si of P and the ray from the origin to
vi is given by vi×Si

2 .

5. You can convince yourself that the area of ΩP is given the sum of the oriented areas,∑N−1
i=1

vi×Si
2 .

6. Now, using Taylor series approximations for ω(ti) = vi, we can get the fact that Si is equal
to ω̇(ti)∆ti + ω̈(αiti)(∆ti)

2 for some |αi| < 1.

7. Suppose that ω is contained in B(0, R), that ∆ti ≤ ∆ for all i and |ω̈(t)| < C for all t. We
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obtain that:

N−1∑
i=1

vi × Si
2

=
N−1∑
i=1

vi ×
(
ω̇(ti)∆ti + ω̈(αiti)(∆ti)

2
)

2

=
N−1∑
i=1

vi × (ω̇(ti)∆ti)

2
+
N−1∑
i=1

vi ×
(
ω̈(αiti)(∆ti)

2
)

2︸ ︷︷ ︸
≤C(N−1)∆

→
∆→0

∫ L

0

ω × ω̇
2

dt

Another, simpler proof uses the divergence theorem and it applies to non-smooth ∂Ω as well.

Proof 2. If Ω is an open, connected set of finite perimeter, and we parameterize the boundary to
get ω, we also have a divergence theorem (see Evans and Gariepy [7], chapter 5). The reduced
boundary ∂∗Ω of sets of finite perimeter, which is the boundary that one can “see” when you
integrate, is the boundary we pay attention to, not the topological boundary.

1. Define the radial vectorfield v(x) = x and notice that ∇ · v(x) = 2.

2. We will have that the oriented unit normal exists H1 almost every t ∈ ∂∗Ω the unit normal
~n(t). Then the orienting unit tanget at those t will be ~n(t) rotated π

2 counterclockwise and
we will denote it by ω̇(t).

3. We get that: ∫
Ω
∇ · v(x)dx =

∫
ω
v(ω(t)) · ~n(t) dt

=

∫
ω
v(ω(t))× ω̇(t) dt

=

∫
ω
ω(t)× ω̇(t) dt (since v(ω(t)) = ω(t))

4. using the fact that ∇ · v(x) = 2 everywhere, we get

2H2(Ω) =

∫
ω
ω(t)× ω̇(t) dt

Remark 6.5.1. Actually this volume calculation works even in higher dimensions, but we need to
use k-vectors and wedge products to state it. If v(x) is the radial vectorfield and η is the orienting,
simple unit n− 1-vectorfield for ∂∗Ω, the reduced boundary of any set of finite perimeter Ω ⊂ Rn,
we get:

nHn(Ω) =

∫
∂∗Ω

v(s) ∧ η dHn−1s.

Chapter 7 of Fleming’s book introduces the ideas needed here. See also Frank Morgan’s book [13]
for more about k-vectors and and wedge products.
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Remark 6.5.2. A good start at understanding what a simple k-vector is can be obtained by thinking
of it as the k-dimensional parallelpiped defined by k independent vectors. So, in our case, we take
n− 1 indepepdent vectors in the tangent space of ∂∗Ω and “wedge” them together to get something
that is sort of like a parallelpiped. The wedge product v × η is then the n-dimensional parallelpiped
defined by v and η. (Switching the order of the product, switches the orientation of the product.)
What I have said is not completely correct, since η is unchanged by rotations that keep the plane
that η defines invariant. So, if you think of η as the equivalence class of all parallelpipeds that span
the same n − 1 dimensional subspace and have the same volume, you are not very close to one
accurate picture of the n− 1-vector η.

6.6 The Area Formula

Recall the definition of Lipschitz:

Definition 6.6.1 (Lipschitz). A function F : Rn → Rm is said to be Lipschitz if there is a constant
L <∞ such that |F (x)−F (y)| ≤ L|x− y| for all x, y ∈ Rn. The optimal (smallest) constant L for
which the inequality holds is called the Lipschitz constant.

Understanding how measures of sets and integrals of functions over those sets transform under
mappings is the point of the area formula (and also of the coarea formula, which we will touch
on at the end of he section). The formula is a very general formula that works even for maps which
are merely Lipschitz.

We also need a generalization of the |det(DF )|:

Definition 6.6.2 (Jacobian). The Jacobian of a mapping F : Rn → Rm, JF is defined to be

JF =

{ √
det(DF t ◦DF ) when m ≥ n√
det(DF ◦DF t) when m < n

.

Notice that the definition agrees with |det(DF )| when n = m.

We will need the notion of Hausdorff measure, Hk, as well. Referring the reader to [7, 13] for
details, it will suffice to note that Hausdorff measure is an outer measure that does exactly what
you think it should do for k-dimensional sets in Rn. Zero dimensional Hausdorff Measure is the
counting measure: H0E = the number of point in E. Here is the formal definition that takes a bit
of time to sink in:

Definition 6.6.3 (Hausdorff Measure). Suppose that ν ∈ [0,∞). Letting F denote any countable
collection of subsets of Rn such that E ⊂

⋃
Fi∈F Fi and D(F) be the supremum of the diameters of

the sets Fi ∈ F , we define:

Hν(E) ≡ lim
δ→0

 inf
{F|D(F)≤δ}

∑
Fi∈F

α(ν)

(
diam(Fi)

2

)ν ,

where α(ν) is the volume of the unit ball in ν dimensions for ν ∈ Z+ and is extended to ν 6∈ Z+

using the Γ function.

Remark 6.6.1. Again, I want to emphasize that this yields a measure that does what you think it
should do on smooth, k-dimensional subsets of Rn. The measure is defined for any ν ∈ [0,∞) and
is indispensible in geometric analysis and geometric measure theory.
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If F is Lipschitz, the Rademacher’s theorem (see Evans and Gariepy [7], chapter 6) tells us that
F is differentiable almost everywhere and the following theorem is valid for any mapping from Rn
to Rm, n ≤ m that is at least Lipschitz.

Theorem 6.6.1 (Area formula I). Suppose that F mapping Rn to Rm is Lipschitz and n ≤ m.
Then ∫

E
JF dLn =

∫
F (E)

H0(F−1(y)) dHny

The key idea is that F is linearly approximable at almost every point in E, so we can integate
the dilation factor JF over E to get how much the set has contracted or dilated after mapping.
BUt we have to take into account multiplicity. That is it can be that several pieces map on top of
each other, so the image appears smaller than it should. That is the reason we count the number
of preimages of any point in the image when integrating over F (E). See Figure 6.4.

There is a similar formula that transforms the integral of a function over E to an integral over
F(E) in the range, again accounting for multiplicities.

Theorem 6.6.2 (Area formula II). Suppose that F mapping Rn to Rm is Lipschitz, n ≤ m and g
is integrable function from Rn to R. Then∫

E
g JF dLn =

∫
F (E)

∑
x∈F−1(y)

g(x) dHny

R2

E

1

2

1

1

0

F (E)

R3

H0(F−1(y))

0
0

F

Figure 6.4: Area formula example

The coarea formula, introduced by Herbert Federer in 1959, in a paper titled “Curvature Mea-
sures” [8] is a powerful generalization of Fubini’s theorem. In Fubini’s Theorem, we are allowed to
slice a domain up by xi = constant sets and turn a multidimensional integral into a sequence of
one dimensional integrals. Using the Coarea formula we can slice the domain up using level sets of
Lipschitz functions. Here is the formula:
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Linear Algebra

Here is the brief outline of topics whose mastery will enable you to have a solid, working grasp of
linear spaces and subspaces, linear transformations, and the properties of matrices that represent
transformations and subspaces:

Vector spaces

1. Linear Independence and Vector Space bases. Linear Independence of {vi}ni=1

means that linear combinations of the vi’s,
∑n

i=1 αivi are not zero unless αi = 0’s for
all i. A basis H = {hi}ni=1 is a set of linear independent vectors such that every vector
in v ∈ V can be written as a linear combination of elements of H: v =

∑n
i=1 βihi.

2. Subspaces and Affine subspaces. Subspaces include 0, affine subspaces need not
include 0. (Therefore a subspace is an affine subspace, but not vice versa.)

3. Examples. A rich diversity: Rn, spaces of polynomials, sequence spaces, other function
spaces.

Norms

1. In Rn. Norms map vector to the non-negative real numbers: || · || : V → R+ ∪ {0},
satisfying ||αv|| = |α|||v||, ||v+w|| ≤ ||v||+ ||w||. Important examples: 1-norm, 2-norm,
∞-norm, p-norm

2. In functions spaces. We have the same important examples in function spaces: 1-
norm, 2-norm, ∞-norm, p-norm

Linear operators; affine operators

1. Operator norm. The definition: supx 6=0
|L(x)|
|x|

2. Reduced echelon form and what is tells you about a matrix. You can directly
read off what the null space is and therefore the dimension of the null space, which also
gives you the dimension of the range. The reduced echelon form also tells you what
columns can be used to span the range of A, so we can read off a parameterization of
the range of A.

3. Null space and level sets. Suppose that NA is the null space of A. If A : Rn → Rm
and y ∈ Rm, then if x ∈ Rn satisfies A(x) = y, then Ly = x+NA is the set of all points
in Rn that map to y.
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4. Span of a set of vectors. We denote the set of all linear combinations of the columns
of A, i.e. the span of the columns of A, by span(A).

5. Determinants. Let E ⊂ Rn and FA : Rn → Rn be a linear map represented by a
matrix A. The determinant of a matrix is the volume dilation factor: vol(FA(E)) =
|det(A)|vol(E). The sign of det(A) tells you if the orientation of FA(E) has switched or
has stayed the same as the orientation of E.

Inner products and Orthogonality

1. Orthogonality. When we have an inner product 〈x, y〉, we say x is orthogonal to
y when 〈x, y〉 = 0. This is sometimes denoted x ⊥ y. If all the columns of O are
orthogonal to each other and they each have norm equal to 1, we say that O is an
orthogonal matrix and the columns are orthonormal. Then OOt = OtO = I, the n× n
identity matrix with 1’s down the diagonal and zeros everywhere else.

2. Projections. let P be a matrix with m orthonormal n-dimensional columns. Let P⊥

be the matrix of n−m orthonormal columns each of which is orthogonal to the columns
of P . Then MP = PP t is the operator which projects Rn onto the span of the columns
of P and if x is in span(P ) then MP (x) = x, otherwise, we can decompose x = xP +xP⊥
where xP = MP (x) and xP⊥ = MP⊥ . This decomposition into an element in P and an
element in P⊥ is unique.

3. Nilpotent operators. N is nilpotent if Np = 0 for some p > 1.

4. QR decomposition. Relation to Gram Schmidt orthogonalization: they are basically
the same thing. Suppose A is a matrix of m, n-dimensional vectors. Then A = QR,
where R is upper triangular and Q has orthonormal columns. Thus, span(A) = span(R).

5. Convex functions and supporting hyperplanes. Convex functions are to opti-
mization what linear systems of equations are to differential equations: the “easy” case
(which is not so easy all the time). A closed convex subset E ⊂ Rn equals the intersec-
tion of closed half spaces containing E. If x ∈ Ec and E is convex, then there exists a
v ∈ Rn such that 〈y−x, v〉 < 0 for all y ∈ E. If E is closed and x ∈ Ec, there there is a
closest point in E x∗, such that operatornamedis(x,E) = ||x∗ − x|| > 0. We have that
if we define v = x− x∗, 〈y − x∗, v〉 ≤ 0 for all y ∈ E.

Symmetric operators; normal operators

1. Eigenvectors and eigenvalues. (A− λI)v = 0 → v is an eigenvector corresponding
to the eigenvalue λ. Eigenvectors can be complex numbers.

2. Diagonalization. A is diagonalizable if there is an invertible matrix Q such that
A = QDQ−1 where D is a diagonal matrix. Some matrices are diagonalizable if and
only if we allow Q and D to be complex. If A = At, where At is the transpose of A,
then Q can be taken to be an orthogonal matrix: Q−1 = Qt

3. Jordan Normal Form Generalization of diagonalization that works or all square
matrices: allowing complex values, we are able to get that any square matrix A can
be decomposed – A = Q−1JQ where the J is an upper triangular matrix with the
eigenvalues of A appearing on the diagonal of J .

4. Relation to operator norm. The Jordan normal form tells us that the determinant
of A equals the product of the eigenvalues of A.
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Singular value decomposition (SVD)

1. All matrices have an SVD. It is not necessarily unique, but non-uniqueness harmless

2. Relation to operator norm. If ||A|| denotes the operator norm of A, then ||A|| =
supi σi.

3. Relation to the determinant. Πn
i=1σi = |det(A)| – when determinant is defined.

When A not square, Πn
i=1 is the correct Extension of the determinant since it measure

the expansion or contraction of the subspace normal to the null space of A.

4. How it illuminates the geometry. Either:
{rotation/reflection → orthogonal projection → dilation along coordinate axes → rota-
tion/reflection}
Or:
{rotation/reflection → dilation along coordinate axes → embedding in higher dimen-
sional space → rotation/reflection}

What is different about infinite dimensions?

1. Hamel Bases versus Schauder Bases. finite combinations get everything versus
infinite sums of a countable basis gets everything. (These exist if and only if the space
is separable.)

2. Subspaces need not be closed. For example, take any Schauder basis S ≡ {si}∞i=1

and consider all finite linear combinations of elements of S. The result is a subspace
but it is not closed.

3. All norms are not equivalent. For example: the 1-norm of the function 1√
x

on the

unit interval is finite but the 2-norm is infinite.

4. The unit ball is not compact. Using the topology induced by the norm, the unit
ball is not compact.

5. Not all linear operators are continuous. bounded = continuous.

6. The spectrum is complicated. There are multiple ways that A− λI can fail to be
non-invertible. Each way generates different types of elements of the spectrum.

7. Proving the spectral theorem. Proving the spectral theorem for normal operators
in Banach spaces is very involved. Proof of this statement: See Conway’s book [4] on
functional analysis and his proof of the spectral theorem for normal operators. For
example, it involves measures on the complex plane which take values in the space of
projection operators.

8. Hilbert spaces are easier than Banach spaces. Having an inner product and a
notion of orthogonality makes many things easier/possible.

9. Continuous, self-adjoint operators on Hilbert spaces are nice. ... things are
fairly similar to finite dimensions

10. Recommendation. Read through Chapters 1 and 2 of Cheney’s book [3], mentioned
below in the “Further Reading” Chapter, to get a sense for the main results in infinite
dimensional linear theory.
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